Matches in SemOpenAlex for { <https://semopenalex.org/work/W3118706885> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W3118706885 endingPage "728" @default.
- W3118706885 startingPage "698" @default.
- W3118706885 abstract "In recent years, data-driven methods have been developed to learn dynamical systems and partial differential equations (PDE). The goal of such work is discovering unknown physics and the corresponding equations. However, prior to achieving this goal, major challenges remain to be resolved, including learning PDE under noisy data and limited discrete data. To overcome these challenges, in this work, a deep-learning based data-driven method, called DL-PDE, is developed to discover the governing PDEs of underlying physical processes. The DL-PDE method combines deep learning via neural networks and data-driven discovery of PDE via sparse regressions. In the DL-PDE, a neural network is first trained, and then a large amount of meta-data is generated, and the required derivatives are calculated by automatic differentiation. Finally, the form of PDE is discovered by sparse regression. The proposed method is tested with physical processes, governed by groundwater flow equation, convection-diffusion equation, Burgers equation and Korteweg-de Vries (KdV) equation, for proof-of-concept and applications in real-world engineering settings. The proposed method achieves satisfactory results when data are noisy and limited." @default.
- W3118706885 created "2021-01-18" @default.
- W3118706885 creator A5043667011 @default.
- W3118706885 date "2021-06-01" @default.
- W3118706885 modified "2023-10-13" @default.
- W3118706885 title "DL-PDE: Deep-Learning Based Data-Driven Discovery of Partial Differential Equations from Discrete and Noisy Data" @default.
- W3118706885 cites W1522301498 @default.
- W3118706885 cites W2088429582 @default.
- W3118706885 cites W2239232218 @default.
- W3118706885 cites W2525748878 @default.
- W3118706885 cites W2573798107 @default.
- W3118706885 cites W2573864470 @default.
- W3118706885 cites W2740145400 @default.
- W3118706885 cites W2752838977 @default.
- W3118706885 cites W2889523591 @default.
- W3118706885 cites W2892208363 @default.
- W3118706885 cites W2898608201 @default.
- W3118706885 cites W2899283552 @default.
- W3118706885 cites W2903660960 @default.
- W3118706885 cites W2949547603 @default.
- W3118706885 cites W2959482009 @default.
- W3118706885 cites W2962727772 @default.
- W3118706885 cites W2962957385 @default.
- W3118706885 cites W2963112935 @default.
- W3118706885 cites W2964079102 @default.
- W3118706885 cites W2981906852 @default.
- W3118706885 cites W3100641539 @default.
- W3118706885 cites W3100769368 @default.
- W3118706885 cites W3104338246 @default.
- W3118706885 cites W3105090572 @default.
- W3118706885 doi "https://doi.org/10.4208/cicp.oa-2020-0142" @default.
- W3118706885 hasPublicationYear "2021" @default.
- W3118706885 type Work @default.
- W3118706885 sameAs 3118706885 @default.
- W3118706885 citedByCount "18" @default.
- W3118706885 countsByYear W31187068852020 @default.
- W3118706885 countsByYear W31187068852021 @default.
- W3118706885 countsByYear W31187068852022 @default.
- W3118706885 countsByYear W31187068852023 @default.
- W3118706885 crossrefType "journal-article" @default.
- W3118706885 hasAuthorship W3118706885A5043667011 @default.
- W3118706885 hasBestOaLocation W31187068852 @default.
- W3118706885 hasConcept C108583219 @default.
- W3118706885 hasConcept C121332964 @default.
- W3118706885 hasConcept C129747778 @default.
- W3118706885 hasConcept C134306372 @default.
- W3118706885 hasConcept C146630112 @default.
- W3118706885 hasConcept C154945302 @default.
- W3118706885 hasConcept C158622935 @default.
- W3118706885 hasConcept C202787564 @default.
- W3118706885 hasConcept C28826006 @default.
- W3118706885 hasConcept C33923547 @default.
- W3118706885 hasConcept C41008148 @default.
- W3118706885 hasConcept C50644808 @default.
- W3118706885 hasConcept C62520636 @default.
- W3118706885 hasConcept C93779851 @default.
- W3118706885 hasConceptScore W3118706885C108583219 @default.
- W3118706885 hasConceptScore W3118706885C121332964 @default.
- W3118706885 hasConceptScore W3118706885C129747778 @default.
- W3118706885 hasConceptScore W3118706885C134306372 @default.
- W3118706885 hasConceptScore W3118706885C146630112 @default.
- W3118706885 hasConceptScore W3118706885C154945302 @default.
- W3118706885 hasConceptScore W3118706885C158622935 @default.
- W3118706885 hasConceptScore W3118706885C202787564 @default.
- W3118706885 hasConceptScore W3118706885C28826006 @default.
- W3118706885 hasConceptScore W3118706885C33923547 @default.
- W3118706885 hasConceptScore W3118706885C41008148 @default.
- W3118706885 hasConceptScore W3118706885C50644808 @default.
- W3118706885 hasConceptScore W3118706885C62520636 @default.
- W3118706885 hasConceptScore W3118706885C93779851 @default.
- W3118706885 hasIssue "3" @default.
- W3118706885 hasLocation W31187068851 @default.
- W3118706885 hasLocation W31187068852 @default.
- W3118706885 hasLocation W31187068853 @default.
- W3118706885 hasOpenAccess W3118706885 @default.
- W3118706885 hasPrimaryLocation W31187068851 @default.
- W3118706885 hasRelatedWork W2158731357 @default.
- W3118706885 hasRelatedWork W2348424729 @default.
- W3118706885 hasRelatedWork W2351208265 @default.
- W3118706885 hasRelatedWork W2359206539 @default.
- W3118706885 hasRelatedWork W2368637410 @default.
- W3118706885 hasRelatedWork W2471685969 @default.
- W3118706885 hasRelatedWork W2940687305 @default.
- W3118706885 hasRelatedWork W3213198455 @default.
- W3118706885 hasRelatedWork W4232257209 @default.
- W3118706885 hasRelatedWork W4313143217 @default.
- W3118706885 hasVolume "29" @default.
- W3118706885 isParatext "false" @default.
- W3118706885 isRetracted "false" @default.
- W3118706885 magId "3118706885" @default.
- W3118706885 workType "article" @default.