Matches in SemOpenAlex for { <https://semopenalex.org/work/W3118778902> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W3118778902 abstract "Semi-supervised learning can be applied to datasets that contain both labeled and unlabeled instances and can result in more accurate predictions compared to fully supervised or unsupervised learning in case limited labeled data is available. A subclass of problems, called Positive-Unlabeled (PU) learning, focuses on cases in which the labeled instances contain only positive examples. Given the lack of negatively labeled data, estimating the general performance is difficult. In this paper, we propose a new approach to approximate the (F_1) score for PU learning. It requires an estimate of what fraction of the total number of positive instances is available in the labeled set. We derive theoretical properties of the approach and apply it to several datasets to study its empirical behavior and to compare it to the most well-known score in the field, LL score. Results show that even when the estimate is quite off compared to the real fraction of positive labels the approximation of the (F_1) score is significantly better compared with the LL score." @default.
- W3118778902 created "2021-01-18" @default.
- W3118778902 creator A5044217809 @default.
- W3118778902 creator A5069250348 @default.
- W3118778902 creator A5091849241 @default.
- W3118778902 date "2020-01-01" @default.
- W3118778902 modified "2023-09-23" @default.
- W3118778902 title "Estimating the $$F_1$$ Score for Learning from Positive and Unlabeled Examples" @default.
- W3118778902 cites W2016210016 @default.
- W3118778902 cites W2030096042 @default.
- W3118778902 cites W2123958887 @default.
- W3118778902 cites W3009210187 @default.
- W3118778902 doi "https://doi.org/10.1007/978-3-030-64583-0_15" @default.
- W3118778902 hasPublicationYear "2020" @default.
- W3118778902 type Work @default.
- W3118778902 sameAs 3118778902 @default.
- W3118778902 citedByCount "0" @default.
- W3118778902 crossrefType "book-chapter" @default.
- W3118778902 hasAuthorship W3118778902A5044217809 @default.
- W3118778902 hasAuthorship W3118778902A5069250348 @default.
- W3118778902 hasAuthorship W3118778902A5091849241 @default.
- W3118778902 hasBestOaLocation W31187789022 @default.
- W3118778902 hasConcept C119857082 @default.
- W3118778902 hasConcept C136389625 @default.
- W3118778902 hasConcept C148524875 @default.
- W3118778902 hasConcept C149629883 @default.
- W3118778902 hasConcept C153180895 @default.
- W3118778902 hasConcept C154945302 @default.
- W3118778902 hasConcept C177264268 @default.
- W3118778902 hasConcept C178790620 @default.
- W3118778902 hasConcept C185592680 @default.
- W3118778902 hasConcept C199360897 @default.
- W3118778902 hasConcept C202444582 @default.
- W3118778902 hasConcept C2776145971 @default.
- W3118778902 hasConcept C33923547 @default.
- W3118778902 hasConcept C41008148 @default.
- W3118778902 hasConcept C50644808 @default.
- W3118778902 hasConcept C58973888 @default.
- W3118778902 hasConcept C65660741 @default.
- W3118778902 hasConcept C8038995 @default.
- W3118778902 hasConcept C9652623 @default.
- W3118778902 hasConceptScore W3118778902C119857082 @default.
- W3118778902 hasConceptScore W3118778902C136389625 @default.
- W3118778902 hasConceptScore W3118778902C148524875 @default.
- W3118778902 hasConceptScore W3118778902C149629883 @default.
- W3118778902 hasConceptScore W3118778902C153180895 @default.
- W3118778902 hasConceptScore W3118778902C154945302 @default.
- W3118778902 hasConceptScore W3118778902C177264268 @default.
- W3118778902 hasConceptScore W3118778902C178790620 @default.
- W3118778902 hasConceptScore W3118778902C185592680 @default.
- W3118778902 hasConceptScore W3118778902C199360897 @default.
- W3118778902 hasConceptScore W3118778902C202444582 @default.
- W3118778902 hasConceptScore W3118778902C2776145971 @default.
- W3118778902 hasConceptScore W3118778902C33923547 @default.
- W3118778902 hasConceptScore W3118778902C41008148 @default.
- W3118778902 hasConceptScore W3118778902C50644808 @default.
- W3118778902 hasConceptScore W3118778902C58973888 @default.
- W3118778902 hasConceptScore W3118778902C65660741 @default.
- W3118778902 hasConceptScore W3118778902C8038995 @default.
- W3118778902 hasConceptScore W3118778902C9652623 @default.
- W3118778902 hasLocation W31187789021 @default.
- W3118778902 hasLocation W31187789022 @default.
- W3118778902 hasOpenAccess W3118778902 @default.
- W3118778902 hasPrimaryLocation W31187789021 @default.
- W3118778902 hasRelatedWork W10980763 @default.
- W3118778902 hasRelatedWork W11297145 @default.
- W3118778902 hasRelatedWork W1160799 @default.
- W3118778902 hasRelatedWork W13607926 @default.
- W3118778902 hasRelatedWork W1885344 @default.
- W3118778902 hasRelatedWork W3979659 @default.
- W3118778902 hasRelatedWork W5236451 @default.
- W3118778902 hasRelatedWork W5460419 @default.
- W3118778902 hasRelatedWork W6581905 @default.
- W3118778902 hasRelatedWork W9321062 @default.
- W3118778902 isParatext "false" @default.
- W3118778902 isRetracted "false" @default.
- W3118778902 magId "3118778902" @default.
- W3118778902 workType "book-chapter" @default.