Matches in SemOpenAlex for { <https://semopenalex.org/work/W3118793607> ?p ?o ?g. }
- W3118793607 endingPage "44" @default.
- W3118793607 startingPage "44" @default.
- W3118793607 abstract "The goals of this study were to examine whether machine-learning algorithms outperform multivariable logistic regression in the prediction of insufficient response to methotrexate (MTX); secondly, to examine which features are essential for correct prediction; and finally, to investigate whether the best performing model specifically identifies insufficient responders to MTX (combination) therapy. The prediction of insufficient response (3-month Disease Activity Score 28-Erythrocyte-sedimentation rate (DAS28-ESR) > 3.2) was assessed using logistic regression, least absolute shrinkage and selection operator (LASSO), random forest, and extreme gradient boosting (XGBoost). The baseline features of 355 rheumatoid arthritis (RA) patients from the “treatment in the Rotterdam Early Arthritis CoHort” (tREACH) and the U-Act-Early trial were combined for analyses. The model performances were compared using area under the curve (AUC) of receiver operating characteristic (ROC) curves, 95% confidence intervals (95% CI), and sensitivity and specificity. Finally, the best performing model following feature selection was tested on 101 RA patients starting tocilizumab (TCZ)-monotherapy. Logistic regression (AUC = 0.77 95% CI: 0.68–0.86) performed as well as LASSO (AUC = 0.76, 95% CI: 0.67–0.85), random forest (AUC = 0.71, 95% CI: 0.61 = 0.81), and XGBoost (AUC = 0.70, 95% CI: 0.61–0.81), yet logistic regression reached the highest sensitivity (81%). The most important features were baseline DAS28 (components). For all algorithms, models with six features performed similarly to those with 16. When applied to the TCZ-monotherapy group, logistic regression’s sensitivity significantly dropped from 83% to 69% (p = 0.03). In the current dataset, logistic regression performed equally well compared to machine-learning algorithms in the prediction of insufficient response to MTX. Models could be reduced to six features, which are more conducive for clinical implementation. Interestingly, the prediction model was specific to MTX (combination) therapy response." @default.
- W3118793607 created "2021-01-18" @default.
- W3118793607 creator A5013548508 @default.
- W3118793607 creator A5017043157 @default.
- W3118793607 creator A5036690563 @default.
- W3118793607 creator A5044217809 @default.
- W3118793607 creator A5050128764 @default.
- W3118793607 creator A5065493212 @default.
- W3118793607 creator A5073590530 @default.
- W3118793607 creator A5077831107 @default.
- W3118793607 creator A5085442503 @default.
- W3118793607 date "2021-01-14" @default.
- W3118793607 modified "2023-10-16" @default.
- W3118793607 title "Complex Machine-Learning Algorithms and Multivariable Logistic Regression on Par in the Prediction of Insufficient Clinical Response to Methotrexate in Rheumatoid Arthritis" @default.
- W3118793607 cites W1623985254 @default.
- W3118793607 cites W1678356000 @default.
- W3118793607 cites W2006617902 @default.
- W3118793607 cites W2042571564 @default.
- W3118793607 cites W2119387367 @default.
- W3118793607 cites W2130695501 @default.
- W3118793607 cites W2135046866 @default.
- W3118793607 cites W2139439610 @default.
- W3118793607 cites W2153714977 @default.
- W3118793607 cites W2156049013 @default.
- W3118793607 cites W2171364167 @default.
- W3118793607 cites W2177870565 @default.
- W3118793607 cites W2408830150 @default.
- W3118793607 cites W2742722472 @default.
- W3118793607 cites W2750268731 @default.
- W3118793607 cites W2791003177 @default.
- W3118793607 cites W2884306394 @default.
- W3118793607 cites W2902984827 @default.
- W3118793607 cites W2904510532 @default.
- W3118793607 cites W2909560755 @default.
- W3118793607 cites W2913997948 @default.
- W3118793607 cites W2939028508 @default.
- W3118793607 cites W2955287451 @default.
- W3118793607 cites W2964201896 @default.
- W3118793607 cites W2979922525 @default.
- W3118793607 cites W2997273696 @default.
- W3118793607 cites W3007915134 @default.
- W3118793607 cites W3023407905 @default.
- W3118793607 cites W3046846768 @default.
- W3118793607 cites W3068188279 @default.
- W3118793607 cites W3086336514 @default.
- W3118793607 cites W3102476541 @default.
- W3118793607 cites W4231972505 @default.
- W3118793607 doi "https://doi.org/10.3390/jpm11010044" @default.
- W3118793607 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7828730" @default.
- W3118793607 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33466633" @default.
- W3118793607 hasPublicationYear "2021" @default.
- W3118793607 type Work @default.
- W3118793607 sameAs 3118793607 @default.
- W3118793607 citedByCount "12" @default.
- W3118793607 countsByYear W31187936072021 @default.
- W3118793607 countsByYear W31187936072022 @default.
- W3118793607 countsByYear W31187936072023 @default.
- W3118793607 crossrefType "journal-article" @default.
- W3118793607 hasAuthorship W3118793607A5013548508 @default.
- W3118793607 hasAuthorship W3118793607A5017043157 @default.
- W3118793607 hasAuthorship W3118793607A5036690563 @default.
- W3118793607 hasAuthorship W3118793607A5044217809 @default.
- W3118793607 hasAuthorship W3118793607A5050128764 @default.
- W3118793607 hasAuthorship W3118793607A5065493212 @default.
- W3118793607 hasAuthorship W3118793607A5073590530 @default.
- W3118793607 hasAuthorship W3118793607A5077831107 @default.
- W3118793607 hasAuthorship W3118793607A5085442503 @default.
- W3118793607 hasBestOaLocation W31187936071 @default.
- W3118793607 hasConcept C11413529 @default.
- W3118793607 hasConcept C119857082 @default.
- W3118793607 hasConcept C126322002 @default.
- W3118793607 hasConcept C136764020 @default.
- W3118793607 hasConcept C151956035 @default.
- W3118793607 hasConcept C169258074 @default.
- W3118793607 hasConcept C2777575956 @default.
- W3118793607 hasConcept C2778143017 @default.
- W3118793607 hasConcept C33923547 @default.
- W3118793607 hasConcept C37616216 @default.
- W3118793607 hasConcept C41008148 @default.
- W3118793607 hasConcept C44249647 @default.
- W3118793607 hasConcept C58471807 @default.
- W3118793607 hasConcept C71924100 @default.
- W3118793607 hasConcept C76318530 @default.
- W3118793607 hasConceptScore W3118793607C11413529 @default.
- W3118793607 hasConceptScore W3118793607C119857082 @default.
- W3118793607 hasConceptScore W3118793607C126322002 @default.
- W3118793607 hasConceptScore W3118793607C136764020 @default.
- W3118793607 hasConceptScore W3118793607C151956035 @default.
- W3118793607 hasConceptScore W3118793607C169258074 @default.
- W3118793607 hasConceptScore W3118793607C2777575956 @default.
- W3118793607 hasConceptScore W3118793607C2778143017 @default.
- W3118793607 hasConceptScore W3118793607C33923547 @default.
- W3118793607 hasConceptScore W3118793607C37616216 @default.
- W3118793607 hasConceptScore W3118793607C41008148 @default.
- W3118793607 hasConceptScore W3118793607C44249647 @default.
- W3118793607 hasConceptScore W3118793607C58471807 @default.
- W3118793607 hasConceptScore W3118793607C71924100 @default.
- W3118793607 hasConceptScore W3118793607C76318530 @default.