Matches in SemOpenAlex for { <https://semopenalex.org/work/W3118805110> ?p ?o ?g. }
- W3118805110 endingPage "457" @default.
- W3118805110 startingPage "441" @default.
- W3118805110 abstract "This study develops a new joint modeling approach to simultaneously analyze longitudinal and time-to-event data with latent variables. The proposed model consists of three components. The first component is a hidden Markov model for investigating a longitudinal observation process and its underlying transition process as well as their potential risk factors and dynamic heterogeneity. The second component is a factor analysis model for characterizing latent risk factors through multiple observed variables. The third component is a proportional hazards model for examining the effects of observed and latent risk factors on the hazards of interest. A shared random effect is introduced to allow the longitudinal and time-to-event outcomes to be correlated. A Bayesian approach coupled with efficient Markov chain Monte Carlo methods is developed to conduct statistical inference. The performance of the proposed method is evaluated through simulation studies. An application of the proposed model to a general health survey study concerning cognitive impairment and mortality for Chinese elders is presented." @default.
- W3118805110 created "2021-01-18" @default.
- W3118805110 creator A5005245118 @default.
- W3118805110 creator A5054989270 @default.
- W3118805110 creator A5056116087 @default.
- W3118805110 creator A5064357053 @default.
- W3118805110 date "2021-01-07" @default.
- W3118805110 modified "2023-09-25" @default.
- W3118805110 title "Joint Hidden Markov Model for Longitudinal and Time-to-Event Data with Latent Variables" @default.
- W3118805110 cites W1947560069 @default.
- W3118805110 cites W1980542913 @default.
- W3118805110 cites W1986546598 @default.
- W3118805110 cites W1989539075 @default.
- W3118805110 cites W1993487992 @default.
- W3118805110 cites W1996525588 @default.
- W3118805110 cites W2001050092 @default.
- W3118805110 cites W2007196674 @default.
- W3118805110 cites W2015558203 @default.
- W3118805110 cites W2024087673 @default.
- W3118805110 cites W2027445478 @default.
- W3118805110 cites W2032758468 @default.
- W3118805110 cites W2038376128 @default.
- W3118805110 cites W2045735707 @default.
- W3118805110 cites W2054192965 @default.
- W3118805110 cites W2057765075 @default.
- W3118805110 cites W2090342357 @default.
- W3118805110 cites W2092566747 @default.
- W3118805110 cites W2094449554 @default.
- W3118805110 cites W2100464372 @default.
- W3118805110 cites W2101868057 @default.
- W3118805110 cites W2116472362 @default.
- W3118805110 cites W2133217116 @default.
- W3118805110 cites W2150037324 @default.
- W3118805110 cites W2154317628 @default.
- W3118805110 cites W2158553659 @default.
- W3118805110 cites W2406321312 @default.
- W3118805110 cites W2520806078 @default.
- W3118805110 cites W2575176051 @default.
- W3118805110 cites W2581175278 @default.
- W3118805110 cites W2730242206 @default.
- W3118805110 cites W2887572439 @default.
- W3118805110 cites W2896723882 @default.
- W3118805110 cites W3147894994 @default.
- W3118805110 cites W4214505185 @default.
- W3118805110 cites W4235092540 @default.
- W3118805110 doi "https://doi.org/10.1080/00273171.2020.1865864" @default.
- W3118805110 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33410715" @default.
- W3118805110 hasPublicationYear "2021" @default.
- W3118805110 type Work @default.
- W3118805110 sameAs 3118805110 @default.
- W3118805110 citedByCount "4" @default.
- W3118805110 countsByYear W31188051102021 @default.
- W3118805110 countsByYear W31188051102022 @default.
- W3118805110 countsByYear W31188051102023 @default.
- W3118805110 crossrefType "journal-article" @default.
- W3118805110 hasAuthorship W3118805110A5005245118 @default.
- W3118805110 hasAuthorship W3118805110A5054989270 @default.
- W3118805110 hasAuthorship W3118805110A5056116087 @default.
- W3118805110 hasAuthorship W3118805110A5064357053 @default.
- W3118805110 hasConcept C105795698 @default.
- W3118805110 hasConcept C107673813 @default.
- W3118805110 hasConcept C111350023 @default.
- W3118805110 hasConcept C119857082 @default.
- W3118805110 hasConcept C121332964 @default.
- W3118805110 hasConcept C124101348 @default.
- W3118805110 hasConcept C126322002 @default.
- W3118805110 hasConcept C134261354 @default.
- W3118805110 hasConcept C149782125 @default.
- W3118805110 hasConcept C154945302 @default.
- W3118805110 hasConcept C160234255 @default.
- W3118805110 hasConcept C168167062 @default.
- W3118805110 hasConcept C168743327 @default.
- W3118805110 hasConcept C23224414 @default.
- W3118805110 hasConcept C2776214188 @default.
- W3118805110 hasConcept C2779662365 @default.
- W3118805110 hasConcept C33923547 @default.
- W3118805110 hasConcept C41008148 @default.
- W3118805110 hasConcept C51167844 @default.
- W3118805110 hasConcept C62520636 @default.
- W3118805110 hasConcept C65965080 @default.
- W3118805110 hasConcept C71924100 @default.
- W3118805110 hasConcept C95190672 @default.
- W3118805110 hasConcept C97355855 @default.
- W3118805110 hasConceptScore W3118805110C105795698 @default.
- W3118805110 hasConceptScore W3118805110C107673813 @default.
- W3118805110 hasConceptScore W3118805110C111350023 @default.
- W3118805110 hasConceptScore W3118805110C119857082 @default.
- W3118805110 hasConceptScore W3118805110C121332964 @default.
- W3118805110 hasConceptScore W3118805110C124101348 @default.
- W3118805110 hasConceptScore W3118805110C126322002 @default.
- W3118805110 hasConceptScore W3118805110C134261354 @default.
- W3118805110 hasConceptScore W3118805110C149782125 @default.
- W3118805110 hasConceptScore W3118805110C154945302 @default.
- W3118805110 hasConceptScore W3118805110C160234255 @default.
- W3118805110 hasConceptScore W3118805110C168167062 @default.
- W3118805110 hasConceptScore W3118805110C168743327 @default.
- W3118805110 hasConceptScore W3118805110C23224414 @default.
- W3118805110 hasConceptScore W3118805110C2776214188 @default.