Matches in SemOpenAlex for { <https://semopenalex.org/work/W3118827657> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W3118827657 endingPage "253" @default.
- W3118827657 startingPage "239" @default.
- W3118827657 abstract "The increasing number of phishing attacks is one of the major concerns of security researchers today. The traditional tools for identifying phishing websites use signature-based approaches which are not able to detect newly created phishing webpages. Thus, researchers are coming up with machine learning-based methods which are capable to detect and classify the phishing webpages with high accuracy if a large and variety of features are considered. However, building a classification model using a large number of features takes time which hampers the timely detection of phishing websites. Therefore, it is pertinent to shortlist a set of features using a feature selection method so that high-performance classification models can be developed in less time. In this chapter, we study the role of feature selection methods in detecting phishing webpages efficiently and effectively. A comparative analysis of machine learning algorithms is carried out on the basis of their performance without and with feature selection. Experiments are conducted on a phishing dataset with 30 features containing 4898 phishing and 6157 benign webpages. Several machine learning algorithms are used for obtaining the best results. Afterward, a feature selection method is employed to improve the efficiency of the models. The best accuracy is obtained by random forest both before and after feature selection with a significant improvement in model building time. The experiments demonstrate that employing a feature selection method along with machine learning algorithms can improve the build time of classification models for phishing detection without compromising their accuracy." @default.
- W3118827657 created "2021-01-18" @default.
- W3118827657 creator A5005709855 @default.
- W3118827657 creator A5027345565 @default.
- W3118827657 date "2021-01-01" @default.
- W3118827657 modified "2023-10-04" @default.
- W3118827657 title "An Efficient Approach for Phishing Detection using Machine Learning" @default.
- W3118827657 cites W1147066959 @default.
- W3118827657 cites W2057787526 @default.
- W3118827657 cites W2101210513 @default.
- W3118827657 cites W2133990480 @default.
- W3118827657 cites W2139565456 @default.
- W3118827657 cites W2297844173 @default.
- W3118827657 cites W2418966180 @default.
- W3118827657 cites W2546577791 @default.
- W3118827657 cites W2565147608 @default.
- W3118827657 cites W2567869469 @default.
- W3118827657 cites W2735195081 @default.
- W3118827657 cites W2789539257 @default.
- W3118827657 cites W2883543619 @default.
- W3118827657 cites W2890718808 @default.
- W3118827657 cites W2905582731 @default.
- W3118827657 cites W2906361067 @default.
- W3118827657 cites W2967877466 @default.
- W3118827657 cites W2996625456 @default.
- W3118827657 cites W2999300566 @default.
- W3118827657 cites W3004732066 @default.
- W3118827657 cites W3006446816 @default.
- W3118827657 cites W3039467114 @default.
- W3118827657 cites W3158304349 @default.
- W3118827657 cites W349336847 @default.
- W3118827657 doi "https://doi.org/10.1007/978-981-15-8711-5_12" @default.
- W3118827657 hasPublicationYear "2021" @default.
- W3118827657 type Work @default.
- W3118827657 sameAs 3118827657 @default.
- W3118827657 citedByCount "20" @default.
- W3118827657 countsByYear W31188276572021 @default.
- W3118827657 countsByYear W31188276572022 @default.
- W3118827657 countsByYear W31188276572023 @default.
- W3118827657 crossrefType "book-chapter" @default.
- W3118827657 hasAuthorship W3118827657A5005709855 @default.
- W3118827657 hasAuthorship W3118827657A5027345565 @default.
- W3118827657 hasConcept C110875604 @default.
- W3118827657 hasConcept C119857082 @default.
- W3118827657 hasConcept C124101348 @default.
- W3118827657 hasConcept C136764020 @default.
- W3118827657 hasConcept C138885662 @default.
- W3118827657 hasConcept C148483581 @default.
- W3118827657 hasConcept C154945302 @default.
- W3118827657 hasConcept C169258074 @default.
- W3118827657 hasConcept C21959979 @default.
- W3118827657 hasConcept C2776401178 @default.
- W3118827657 hasConcept C41008148 @default.
- W3118827657 hasConcept C41895202 @default.
- W3118827657 hasConcept C52622490 @default.
- W3118827657 hasConcept C81917197 @default.
- W3118827657 hasConcept C83860907 @default.
- W3118827657 hasConceptScore W3118827657C110875604 @default.
- W3118827657 hasConceptScore W3118827657C119857082 @default.
- W3118827657 hasConceptScore W3118827657C124101348 @default.
- W3118827657 hasConceptScore W3118827657C136764020 @default.
- W3118827657 hasConceptScore W3118827657C138885662 @default.
- W3118827657 hasConceptScore W3118827657C148483581 @default.
- W3118827657 hasConceptScore W3118827657C154945302 @default.
- W3118827657 hasConceptScore W3118827657C169258074 @default.
- W3118827657 hasConceptScore W3118827657C21959979 @default.
- W3118827657 hasConceptScore W3118827657C2776401178 @default.
- W3118827657 hasConceptScore W3118827657C41008148 @default.
- W3118827657 hasConceptScore W3118827657C41895202 @default.
- W3118827657 hasConceptScore W3118827657C52622490 @default.
- W3118827657 hasConceptScore W3118827657C81917197 @default.
- W3118827657 hasConceptScore W3118827657C83860907 @default.
- W3118827657 hasLocation W31188276571 @default.
- W3118827657 hasOpenAccess W3118827657 @default.
- W3118827657 hasPrimaryLocation W31188276571 @default.
- W3118827657 hasRelatedWork W1904130553 @default.
- W3118827657 hasRelatedWork W2996625456 @default.
- W3118827657 hasRelatedWork W3021360715 @default.
- W3118827657 hasRelatedWork W3096829912 @default.
- W3118827657 hasRelatedWork W3118827657 @default.
- W3118827657 hasRelatedWork W3185591237 @default.
- W3118827657 hasRelatedWork W4293525103 @default.
- W3118827657 hasRelatedWork W4312566969 @default.
- W3118827657 hasRelatedWork W4318706105 @default.
- W3118827657 hasRelatedWork W3208111358 @default.
- W3118827657 isParatext "false" @default.
- W3118827657 isRetracted "false" @default.
- W3118827657 magId "3118827657" @default.
- W3118827657 workType "book-chapter" @default.