Matches in SemOpenAlex for { <https://semopenalex.org/work/W3118869673> ?p ?o ?g. }
- W3118869673 endingPage "114604" @default.
- W3118869673 startingPage "114604" @default.
- W3118869673 abstract "Devising intelligent systems capable of identifying the idiosyncratic needs of users at scale and translating them into attribute-level design feedback and recommendations is a key prerequisite for successful user-centered design processes. Recent studies show that 49% of design firms lack systems and tools for monitoring external platforms, and only 8% have adopted digital, data-driven approaches for new product development despite acknowledging them as a high priority. The state-of-the-art attribute-level sentiment analysis approaches based on deep learning have achieved promising results; however, these methods pose strict preconditions, require manually labeled data for training and pre-defined attributes by experts, and only classify sentiments intro predefined categories which have limited implications for designers. This article develops a rule-based methodology for extracting and analyzing the sentiment expressions of users on a large scale, from myriad reviews available on social media and e-commerce platforms. The methodology further advances current unsupervised attribute-level sentiment analysis approaches by enabling efficient identification and mapping of sentiment expressions of individual users onto their respective attributes. Experiments on a large dataset scraped from a major e-commerce retail store for apparel and indicate 74.3%–93.8% precision in extracting attribute-level sentiment expressions of users and demonstrate the feasibility and potentials of the developed methodology for large-scale need finding from user reviews." @default.
- W3118869673 created "2021-01-18" @default.
- W3118869673 creator A5017863793 @default.
- W3118869673 creator A5020908862 @default.
- W3118869673 date "2021-06-01" @default.
- W3118869673 modified "2023-10-12" @default.
- W3118869673 title "Analysis of sentiment expressions for user-centered design" @default.
- W3118869673 cites W1484312846 @default.
- W3118869673 cites W1523794535 @default.
- W3118869673 cites W1605066833 @default.
- W3118869673 cites W187383899 @default.
- W3118869673 cites W1965660055 @default.
- W3118869673 cites W1978739561 @default.
- W3118869673 cites W1981616524 @default.
- W3118869673 cites W1988772356 @default.
- W3118869673 cites W1988939740 @default.
- W3118869673 cites W1994098706 @default.
- W3118869673 cites W1996134260 @default.
- W3118869673 cites W2004830941 @default.
- W3118869673 cites W2020909954 @default.
- W3118869673 cites W2030439497 @default.
- W3118869673 cites W2033032525 @default.
- W3118869673 cites W2035265584 @default.
- W3118869673 cites W2035649396 @default.
- W3118869673 cites W2043278166 @default.
- W3118869673 cites W2046715693 @default.
- W3118869673 cites W2055555756 @default.
- W3118869673 cites W2071332064 @default.
- W3118869673 cites W2075904323 @default.
- W3118869673 cites W2088129202 @default.
- W3118869673 cites W2095603291 @default.
- W3118869673 cites W2097606805 @default.
- W3118869673 cites W2098728317 @default.
- W3118869673 cites W2099167136 @default.
- W3118869673 cites W2124607917 @default.
- W3118869673 cites W2139465040 @default.
- W3118869673 cites W2160660844 @default.
- W3118869673 cites W2215376118 @default.
- W3118869673 cites W2250560707 @default.
- W3118869673 cites W2250861254 @default.
- W3118869673 cites W2251294039 @default.
- W3118869673 cites W2277457930 @default.
- W3118869673 cites W2335703454 @default.
- W3118869673 cites W2404032054 @default.
- W3118869673 cites W2409977250 @default.
- W3118869673 cites W2465278676 @default.
- W3118869673 cites W2465978385 @default.
- W3118869673 cites W2528258710 @default.
- W3118869673 cites W2534040402 @default.
- W3118869673 cites W2563172398 @default.
- W3118869673 cites W2609073783 @default.
- W3118869673 cites W2626561952 @default.
- W3118869673 cites W2743243853 @default.
- W3118869673 cites W2759712683 @default.
- W3118869673 cites W2762460800 @default.
- W3118869673 cites W2772301152 @default.
- W3118869673 cites W2790250716 @default.
- W3118869673 cites W2799557147 @default.
- W3118869673 cites W2884197621 @default.
- W3118869673 cites W2884776271 @default.
- W3118869673 cites W2889996681 @default.
- W3118869673 cites W2895547478 @default.
- W3118869673 cites W2895782915 @default.
- W3118869673 cites W2901288482 @default.
- W3118869673 cites W2914820290 @default.
- W3118869673 cites W2947189214 @default.
- W3118869673 cites W2962793900 @default.
- W3118869673 cites W2963264961 @default.
- W3118869673 cites W2963337756 @default.
- W3118869673 cites W2964165264 @default.
- W3118869673 cites W2964236337 @default.
- W3118869673 cites W2972076738 @default.
- W3118869673 cites W2997973698 @default.
- W3118869673 cites W3125781831 @default.
- W3118869673 cites W3147001383 @default.
- W3118869673 doi "https://doi.org/10.1016/j.eswa.2021.114604" @default.
- W3118869673 hasPublicationYear "2021" @default.
- W3118869673 type Work @default.
- W3118869673 sameAs 3118869673 @default.
- W3118869673 citedByCount "18" @default.
- W3118869673 countsByYear W31188696732021 @default.
- W3118869673 countsByYear W31188696732022 @default.
- W3118869673 countsByYear W31188696732023 @default.
- W3118869673 crossrefType "journal-article" @default.
- W3118869673 hasAuthorship W3118869673A5017863793 @default.
- W3118869673 hasAuthorship W3118869673A5020908862 @default.
- W3118869673 hasConcept C116834253 @default.
- W3118869673 hasConcept C121332964 @default.
- W3118869673 hasConcept C124101348 @default.
- W3118869673 hasConcept C136764020 @default.
- W3118869673 hasConcept C154945302 @default.
- W3118869673 hasConcept C166957645 @default.
- W3118869673 hasConcept C2522767166 @default.
- W3118869673 hasConcept C2524010 @default.
- W3118869673 hasConcept C26517878 @default.
- W3118869673 hasConcept C2778755073 @default.
- W3118869673 hasConcept C33923547 @default.
- W3118869673 hasConcept C38652104 @default.