Matches in SemOpenAlex for { <https://semopenalex.org/work/W3118889207> ?p ?o ?g. }
- W3118889207 endingPage "10377" @default.
- W3118889207 startingPage "10364" @default.
- W3118889207 abstract "Anomaly detection of a hyperspectral image without any prior information has attracted much more attention in remote sensing image understanding and interpretation, which aims at determining whether a sample belongs to background or anomaly. Low-rank dictionary learning plays an important role in exploiting the low-rank prior of background for hyperspectral image (HSI) anomaly detection. In this article, the low-rank dictionary learning is introduced to learn a dictionary which can reconstruct the background positively, while anomaly cannot. Considering the high correlation of data especially between the adjacent bands, we resort to spectral-difference low-rank dictionary representation learning for global background modeling which can fully exploit the low-rank prior of background. Then, the residual matrix is used to distinguish anomaly. Different from the existing anomaly detection methods based on dictionary which is constructed or learned in a separated step, our proposed model can simultaneously learn the dictionary and separate anomaly by iterative learning. The experimental results on five real data sets demonstrate the superior performance of the proposed method for hyperspectral anomaly detection compared with other state-of-the-art algorithms." @default.
- W3118889207 created "2021-01-18" @default.
- W3118889207 creator A5008825234 @default.
- W3118889207 creator A5032503755 @default.
- W3118889207 creator A5049776440 @default.
- W3118889207 creator A5050630882 @default.
- W3118889207 creator A5059262797 @default.
- W3118889207 creator A5066376249 @default.
- W3118889207 date "2021-12-01" @default.
- W3118889207 modified "2023-10-17" @default.
- W3118889207 title "Spectral-Difference Low-Rank Representation Learning for Hyperspectral Anomaly Detection" @default.
- W3118889207 cites W1808881044 @default.
- W3118889207 cites W1972578813 @default.
- W3118889207 cites W1997201895 @default.
- W3118889207 cites W2004491663 @default.
- W3118889207 cites W2007588387 @default.
- W3118889207 cites W2019985866 @default.
- W3118889207 cites W2026918110 @default.
- W3118889207 cites W2047870694 @default.
- W3118889207 cites W2069959554 @default.
- W3118889207 cites W2097915756 @default.
- W3118889207 cites W2103972604 @default.
- W3118889207 cites W2124267685 @default.
- W3118889207 cites W2145962650 @default.
- W3118889207 cites W2157785665 @default.
- W3118889207 cites W2160547390 @default.
- W3118889207 cites W2163547919 @default.
- W3118889207 cites W2163957348 @default.
- W3118889207 cites W2288752886 @default.
- W3118889207 cites W2295576075 @default.
- W3118889207 cites W2588000623 @default.
- W3118889207 cites W2592141703 @default.
- W3118889207 cites W2740976805 @default.
- W3118889207 cites W2766129308 @default.
- W3118889207 cites W2796629918 @default.
- W3118889207 cites W2800955846 @default.
- W3118889207 cites W2898121906 @default.
- W3118889207 cites W2900199428 @default.
- W3118889207 cites W2922177059 @default.
- W3118889207 cites W2945989246 @default.
- W3118889207 cites W2947543764 @default.
- W3118889207 cites W2949343319 @default.
- W3118889207 cites W2950325582 @default.
- W3118889207 cites W2955133371 @default.
- W3118889207 cites W2972480129 @default.
- W3118889207 cites W2977355106 @default.
- W3118889207 cites W2983563481 @default.
- W3118889207 cites W2985358507 @default.
- W3118889207 cites W2991616716 @default.
- W3118889207 cites W2993703462 @default.
- W3118889207 cites W3005109735 @default.
- W3118889207 cites W3024505451 @default.
- W3118889207 cites W3035042772 @default.
- W3118889207 doi "https://doi.org/10.1109/tgrs.2020.3046727" @default.
- W3118889207 hasPublicationYear "2021" @default.
- W3118889207 type Work @default.
- W3118889207 sameAs 3118889207 @default.
- W3118889207 citedByCount "20" @default.
- W3118889207 countsByYear W31188892072021 @default.
- W3118889207 countsByYear W31188892072022 @default.
- W3118889207 countsByYear W31188892072023 @default.
- W3118889207 crossrefType "journal-article" @default.
- W3118889207 hasAuthorship W3118889207A5008825234 @default.
- W3118889207 hasAuthorship W3118889207A5032503755 @default.
- W3118889207 hasAuthorship W3118889207A5049776440 @default.
- W3118889207 hasAuthorship W3118889207A5050630882 @default.
- W3118889207 hasAuthorship W3118889207A5059262797 @default.
- W3118889207 hasAuthorship W3118889207A5066376249 @default.
- W3118889207 hasConcept C11413529 @default.
- W3118889207 hasConcept C114614502 @default.
- W3118889207 hasConcept C121332964 @default.
- W3118889207 hasConcept C12997251 @default.
- W3118889207 hasConcept C138885662 @default.
- W3118889207 hasConcept C153180895 @default.
- W3118889207 hasConcept C154945302 @default.
- W3118889207 hasConcept C155512373 @default.
- W3118889207 hasConcept C159078339 @default.
- W3118889207 hasConcept C164226766 @default.
- W3118889207 hasConcept C17744445 @default.
- W3118889207 hasConcept C199539241 @default.
- W3118889207 hasConcept C26873012 @default.
- W3118889207 hasConcept C2776359362 @default.
- W3118889207 hasConcept C2776401178 @default.
- W3118889207 hasConcept C33923547 @default.
- W3118889207 hasConcept C41008148 @default.
- W3118889207 hasConcept C41895202 @default.
- W3118889207 hasConcept C739882 @default.
- W3118889207 hasConcept C94625758 @default.
- W3118889207 hasConceptScore W3118889207C11413529 @default.
- W3118889207 hasConceptScore W3118889207C114614502 @default.
- W3118889207 hasConceptScore W3118889207C121332964 @default.
- W3118889207 hasConceptScore W3118889207C12997251 @default.
- W3118889207 hasConceptScore W3118889207C138885662 @default.
- W3118889207 hasConceptScore W3118889207C153180895 @default.
- W3118889207 hasConceptScore W3118889207C154945302 @default.
- W3118889207 hasConceptScore W3118889207C155512373 @default.
- W3118889207 hasConceptScore W3118889207C159078339 @default.
- W3118889207 hasConceptScore W3118889207C164226766 @default.