Matches in SemOpenAlex for { <https://semopenalex.org/work/W3118905357> ?p ?o ?g. }
- W3118905357 abstract "Abstract This study explored the feasibility of achieving rapid nondestructive detection of browning in potatoes from a visual and olfactory perspective. In five grades, 15 pieces were taken out from each batch, respectively, and tested for browning characteristics using Chroma meter (CM), machine vision (MV), and electronic nose (E‐nose). Linear discriminant analysis, support vector machine (SVM), K‐Nearest Neighbor, and Back Propagation Artificial Neuron Network were used to classify the samples. The discriminant accuracy of the MV and E‐nose datasets was 0.960 and 0.813, respectively, and this increased to 1,000 after data fusion. Partial least squares regression and SVM regression were also used to investigate the correlation between two data sets and CM data. The MV results for L *, a *, and b * were 0.864, 0.966, and 0.992, with variances of 1.062, 0.575, and 0.123, respectively, indicating a very strong correlation. The predicted result of E‐nose for a * reached 0.705, and the variance was 1.815, which also showed a high correlation. The data fusion models for L *, a *, and b * yielded 0.883, 0.968, and 0.997, with variances of 1.264, 0.633, and 0.083, respectively. These results indicated that MV and E‐nose can be used as nondestructive detection tools for detecting browning in potatoes. Practical Applications Potato products are popular among consumers because of its rich nutrition and processing characteristics. However, enzymatic reactions during peeling and processing of fresh‐cut potato results in color defects which compromise the quality of the final products. Therefore, it is an inevitable requirement for the development of the industry to adopt appropriate methods to detect and prevent browning in fresh‐cut potatoes as a means of strengthening quality management. The present study explored the feasibility of rapid nondestructive detection of browning in potato from the visual and olfactory aspects. A new idea for the application of machine vision and electronic nose in the field of nondestructive detection of agricultural products was proposed. At the same time, this article has certain reference value to the quality management of potato and other fruit and vegetable processing industry." @default.
- W3118905357 created "2021-01-18" @default.
- W3118905357 creator A5017871867 @default.
- W3118905357 creator A5022743992 @default.
- W3118905357 creator A5049225160 @default.
- W3118905357 creator A5061280507 @default.
- W3118905357 creator A5063713890 @default.
- W3118905357 creator A5063852242 @default.
- W3118905357 creator A5069125994 @default.
- W3118905357 creator A5069542244 @default.
- W3118905357 creator A5076950025 @default.
- W3118905357 date "2021-01-04" @default.
- W3118905357 modified "2023-09-26" @default.
- W3118905357 title "Detection of browning of fresh‐cut potato chips based on machine vision and electronic nose" @default.
- W3118905357 cites W1908930926 @default.
- W3118905357 cites W1980120316 @default.
- W3118905357 cites W1988815431 @default.
- W3118905357 cites W2000130065 @default.
- W3118905357 cites W2019115728 @default.
- W3118905357 cites W2025743553 @default.
- W3118905357 cites W2051463173 @default.
- W3118905357 cites W2075390594 @default.
- W3118905357 cites W2284735529 @default.
- W3118905357 cites W2474053225 @default.
- W3118905357 cites W2485562814 @default.
- W3118905357 cites W2588550200 @default.
- W3118905357 cites W2768665883 @default.
- W3118905357 cites W2779838041 @default.
- W3118905357 cites W2784305523 @default.
- W3118905357 cites W2795471262 @default.
- W3118905357 cites W2801514167 @default.
- W3118905357 cites W2883761027 @default.
- W3118905357 cites W2888418060 @default.
- W3118905357 cites W2888612211 @default.
- W3118905357 cites W2890189655 @default.
- W3118905357 cites W2890428903 @default.
- W3118905357 cites W2898067078 @default.
- W3118905357 cites W2909550368 @default.
- W3118905357 cites W2909854804 @default.
- W3118905357 cites W2923226364 @default.
- W3118905357 cites W2969307906 @default.
- W3118905357 cites W2995845970 @default.
- W3118905357 cites W2997822774 @default.
- W3118905357 cites W2998902301 @default.
- W3118905357 doi "https://doi.org/10.1111/jfpe.13631" @default.
- W3118905357 hasPublicationYear "2021" @default.
- W3118905357 type Work @default.
- W3118905357 sameAs 3118905357 @default.
- W3118905357 citedByCount "3" @default.
- W3118905357 countsByYear W31189053572022 @default.
- W3118905357 countsByYear W31189053572023 @default.
- W3118905357 crossrefType "journal-article" @default.
- W3118905357 hasAuthorship W3118905357A5017871867 @default.
- W3118905357 hasAuthorship W3118905357A5022743992 @default.
- W3118905357 hasAuthorship W3118905357A5049225160 @default.
- W3118905357 hasAuthorship W3118905357A5061280507 @default.
- W3118905357 hasAuthorship W3118905357A5063713890 @default.
- W3118905357 hasAuthorship W3118905357A5063852242 @default.
- W3118905357 hasAuthorship W3118905357A5069125994 @default.
- W3118905357 hasAuthorship W3118905357A5069542244 @default.
- W3118905357 hasAuthorship W3118905357A5076950025 @default.
- W3118905357 hasConcept C105795698 @default.
- W3118905357 hasConcept C12267149 @default.
- W3118905357 hasConcept C153180895 @default.
- W3118905357 hasConcept C154945302 @default.
- W3118905357 hasConcept C185592680 @default.
- W3118905357 hasConcept C23895516 @default.
- W3118905357 hasConcept C31903555 @default.
- W3118905357 hasConcept C33923547 @default.
- W3118905357 hasConcept C41008148 @default.
- W3118905357 hasConcept C48921125 @default.
- W3118905357 hasConcept C50644808 @default.
- W3118905357 hasConcept C53007507 @default.
- W3118905357 hasConcept C69738355 @default.
- W3118905357 hasConceptScore W3118905357C105795698 @default.
- W3118905357 hasConceptScore W3118905357C12267149 @default.
- W3118905357 hasConceptScore W3118905357C153180895 @default.
- W3118905357 hasConceptScore W3118905357C154945302 @default.
- W3118905357 hasConceptScore W3118905357C185592680 @default.
- W3118905357 hasConceptScore W3118905357C23895516 @default.
- W3118905357 hasConceptScore W3118905357C31903555 @default.
- W3118905357 hasConceptScore W3118905357C33923547 @default.
- W3118905357 hasConceptScore W3118905357C41008148 @default.
- W3118905357 hasConceptScore W3118905357C48921125 @default.
- W3118905357 hasConceptScore W3118905357C50644808 @default.
- W3118905357 hasConceptScore W3118905357C53007507 @default.
- W3118905357 hasConceptScore W3118905357C69738355 @default.
- W3118905357 hasFunder F4320335777 @default.
- W3118905357 hasIssue "3" @default.
- W3118905357 hasLocation W31189053571 @default.
- W3118905357 hasOpenAccess W3118905357 @default.
- W3118905357 hasPrimaryLocation W31189053571 @default.
- W3118905357 hasRelatedWork W1809065030 @default.
- W3118905357 hasRelatedWork W2094946501 @default.
- W3118905357 hasRelatedWork W2130093255 @default.
- W3118905357 hasRelatedWork W2146076056 @default.
- W3118905357 hasRelatedWork W2358824780 @default.
- W3118905357 hasRelatedWork W2380927352 @default.
- W3118905357 hasRelatedWork W2530636277 @default.
- W3118905357 hasRelatedWork W3157560838 @default.