Matches in SemOpenAlex for { <https://semopenalex.org/work/W3118993399> ?p ?o ?g. }
- W3118993399 endingPage "3218" @default.
- W3118993399 startingPage "3199" @default.
- W3118993399 abstract "Abstract. Reliable information on building stock and its vulnerability is important for understanding societal exposure to floods. Unfortunately, developing countries have less access to and availability of this information. Therefore, calculations for flood damage assessments have to use the scarce information available, often aggregated on a national or district level. This study aims to improve current assessments of flood damage by extracting individual building characteristics and estimate damage based on the buildings' vulnerability. We carry out an object-based image analysis (OBIA) of high-resolution (11 cm ground sample distance) unmanned aerial vehicle (UAV) imagery to outline building footprints. We then use a support vector machine learning algorithm to classify the delineated buildings. We combine this information with local depth–damage curves to estimate the economic damage for three villages affected by the 2019 January river floods in the southern Shire Basin in Malawi and compare this to a conventional, pixel-based approach using aggregated land use to denote exposure. The flood extent is obtained from satellite imagery (Sentinel-1) and corresponding water depths determined by combining this with elevation data. The results show that OBIA results in building footprints much closer to OpenStreetMap data, in which the pixel-based approach tends to overestimate. Correspondingly, the estimated total damage from the OBIA is lower (EUR 10 140) compared to the pixel-based approach (EUR 15 782). A sensitivity analysis illustrates that uncertainty in the derived damage curves is larger than in the hazard or exposure data. This research highlights the potential for detailed and local damage assessments using UAV imagery to determine exposure and vulnerability in flood damage and risk assessments in data-poor regions." @default.
- W3118993399 created "2021-01-18" @default.
- W3118993399 creator A5025724445 @default.
- W3118993399 creator A5030935165 @default.
- W3118993399 creator A5033174818 @default.
- W3118993399 creator A5051873965 @default.
- W3118993399 creator A5061954726 @default.
- W3118993399 creator A5075546175 @default.
- W3118993399 date "2021-10-27" @default.
- W3118993399 modified "2023-09-23" @default.
- W3118993399 title "Improving flood damage assessments in data-scarce areas by retrieval of building characteristics through UAV image segmentation and machine learning – a case study of the 2019 floods in southern Malawi" @default.
- W3118993399 cites W1916376402 @default.
- W3118993399 cites W1952547733 @default.
- W3118993399 cites W1975919281 @default.
- W3118993399 cites W1984792953 @default.
- W3118993399 cites W1988794271 @default.
- W3118993399 cites W1992578262 @default.
- W3118993399 cites W2017496690 @default.
- W3118993399 cites W2024279222 @default.
- W3118993399 cites W2063907334 @default.
- W3118993399 cites W2076294019 @default.
- W3118993399 cites W2089716607 @default.
- W3118993399 cites W2095645566 @default.
- W3118993399 cites W2104830179 @default.
- W3118993399 cites W2107187716 @default.
- W3118993399 cites W2109699669 @default.
- W3118993399 cites W2115320707 @default.
- W3118993399 cites W2132967462 @default.
- W3118993399 cites W2134530020 @default.
- W3118993399 cites W2151514073 @default.
- W3118993399 cites W2153853604 @default.
- W3118993399 cites W2238853499 @default.
- W3118993399 cites W2534534347 @default.
- W3118993399 cites W2535097434 @default.
- W3118993399 cites W2584178092 @default.
- W3118993399 cites W2595936615 @default.
- W3118993399 cites W2685457721 @default.
- W3118993399 cites W2732720900 @default.
- W3118993399 cites W2744439755 @default.
- W3118993399 cites W2768677636 @default.
- W3118993399 cites W2774490269 @default.
- W3118993399 cites W2793293227 @default.
- W3118993399 cites W2810748649 @default.
- W3118993399 cites W2894669900 @default.
- W3118993399 cites W2903252108 @default.
- W3118993399 cites W2936361621 @default.
- W3118993399 cites W2951472911 @default.
- W3118993399 cites W2968246727 @default.
- W3118993399 cites W2998780623 @default.
- W3118993399 cites W3046468540 @default.
- W3118993399 cites W3047418464 @default.
- W3118993399 cites W3086138307 @default.
- W3118993399 cites W3092575222 @default.
- W3118993399 cites W3134898854 @default.
- W3118993399 cites W3172163067 @default.
- W3118993399 cites W4299689471 @default.
- W3118993399 cites W91285728 @default.
- W3118993399 doi "https://doi.org/10.5194/nhess-21-3199-2021" @default.
- W3118993399 hasPublicationYear "2021" @default.
- W3118993399 type Work @default.
- W3118993399 sameAs 3118993399 @default.
- W3118993399 citedByCount "6" @default.
- W3118993399 countsByYear W31189933992022 @default.
- W3118993399 countsByYear W31189933992023 @default.
- W3118993399 crossrefType "journal-article" @default.
- W3118993399 hasAuthorship W3118993399A5025724445 @default.
- W3118993399 hasAuthorship W3118993399A5030935165 @default.
- W3118993399 hasAuthorship W3118993399A5033174818 @default.
- W3118993399 hasAuthorship W3118993399A5051873965 @default.
- W3118993399 hasAuthorship W3118993399A5061954726 @default.
- W3118993399 hasAuthorship W3118993399A5075546175 @default.
- W3118993399 hasBestOaLocation W31189933991 @default.
- W3118993399 hasConcept C107826830 @default.
- W3118993399 hasConcept C127313418 @default.
- W3118993399 hasConcept C154945302 @default.
- W3118993399 hasConcept C160633673 @default.
- W3118993399 hasConcept C166957645 @default.
- W3118993399 hasConcept C187320778 @default.
- W3118993399 hasConcept C197513456 @default.
- W3118993399 hasConcept C205649164 @default.
- W3118993399 hasConcept C2778102629 @default.
- W3118993399 hasConcept C38652104 @default.
- W3118993399 hasConcept C39432304 @default.
- W3118993399 hasConcept C41008148 @default.
- W3118993399 hasConcept C524765639 @default.
- W3118993399 hasConcept C58640448 @default.
- W3118993399 hasConcept C62649853 @default.
- W3118993399 hasConcept C74256435 @default.
- W3118993399 hasConcept C76886044 @default.
- W3118993399 hasConcept C95713431 @default.
- W3118993399 hasConceptScore W3118993399C107826830 @default.
- W3118993399 hasConceptScore W3118993399C127313418 @default.
- W3118993399 hasConceptScore W3118993399C154945302 @default.
- W3118993399 hasConceptScore W3118993399C160633673 @default.
- W3118993399 hasConceptScore W3118993399C166957645 @default.
- W3118993399 hasConceptScore W3118993399C187320778 @default.
- W3118993399 hasConceptScore W3118993399C197513456 @default.
- W3118993399 hasConceptScore W3118993399C205649164 @default.