Matches in SemOpenAlex for { <https://semopenalex.org/work/W3119002188> ?p ?o ?g. }
- W3119002188 endingPage "3310" @default.
- W3119002188 startingPage "3289" @default.
- W3119002188 abstract "The quick spread of the Coronavirus Disease (COVID-19) infection around the world considered a real danger for global health. The biological structure and symptoms of COVID-19 are similar to other viral chest maladies, which makes it challenging and a big issue to improve approaches for efficient identification of COVID-19 disease. In this study, an automatic prediction of COVID-19 identification is proposed to automatically discriminate between healthy and COVID-19 infected subjects in X-ray images using two successful moderns are traditional machine learning methods (e.g., artificial neural network (ANN), support vector machine (SVM), linear kernel and radial basis function (RBF), k-nearest neighbor (k-NN), Decision Tree (DT), and CN 2 rule inducer techniques) and deep learning models (e.g., MobileNets V2, ResNet50, GoogleNet, DarkNet and Xception). A large X-ray dataset has been created and developed, namely the COVID-19 <i>vs.</i> Normal (400 healthy cases, and 400 COVID cases). To the best of our knowledge, it is currently the largest publicly accessible COVID-19 dataset with the largest number of X-ray images of confirmed COVID-19 infection cases. Based on the results obtained from the experiments, it can be concluded that all the models performed well, deep learning models had achieved the optimum accuracy of 98.8% in ResNet50 model. In comparison, in traditional machine learning techniques, the SVM demonstrated the best result for an accuracy of 95% and RBF accuracy 94% for the prediction of coronavirus disease 2019." @default.
- W3119002188 created "2021-01-18" @default.
- W3119002188 creator A5009368063 @default.
- W3119002188 creator A5016511172 @default.
- W3119002188 creator A5023041667 @default.
- W3119002188 creator A5027184951 @default.
- W3119002188 creator A5028149208 @default.
- W3119002188 creator A5049763844 @default.
- W3119002188 creator A5073594851 @default.
- W3119002188 creator A5083743482 @default.
- W3119002188 creator A5089923255 @default.
- W3119002188 date "2021-01-01" @default.
- W3119002188 modified "2023-10-17" @default.
- W3119002188 title "A Comprehensive Investigation of Machine Learning Feature Extraction and Classification Methods for Automated Diagnosis of COVID-19 Based on X-Ray Images" @default.
- W3119002188 cites W2035549557 @default.
- W3119002188 cites W2165698076 @default.
- W3119002188 cites W2529153069 @default.
- W3119002188 cites W2557738935 @default.
- W3119002188 cites W2581082771 @default.
- W3119002188 cites W2606076173 @default.
- W3119002188 cites W2640386719 @default.
- W3119002188 cites W2768095311 @default.
- W3119002188 cites W2788426287 @default.
- W3119002188 cites W2788508510 @default.
- W3119002188 cites W2789325239 @default.
- W3119002188 cites W2883839661 @default.
- W3119002188 cites W2886281300 @default.
- W3119002188 cites W2896613673 @default.
- W3119002188 cites W2898336166 @default.
- W3119002188 cites W2899635607 @default.
- W3119002188 cites W2900378995 @default.
- W3119002188 cites W2901245345 @default.
- W3119002188 cites W2906853770 @default.
- W3119002188 cites W2908201961 @default.
- W3119002188 cites W2927960701 @default.
- W3119002188 cites W2980329246 @default.
- W3119002188 cites W2982533493 @default.
- W3119002188 cites W2995942064 @default.
- W3119002188 cites W3005679569 @default.
- W3119002188 cites W3008985036 @default.
- W3119002188 cites W3013130152 @default.
- W3119002188 cites W3017117984 @default.
- W3119002188 cites W3019531985 @default.
- W3119002188 cites W3025046335 @default.
- W3119002188 cites W3026419502 @default.
- W3119002188 cites W3031948080 @default.
- W3119002188 cites W3036552116 @default.
- W3119002188 cites W3041809298 @default.
- W3119002188 cites W3094686502 @default.
- W3119002188 cites W3100471717 @default.
- W3119002188 doi "https://doi.org/10.32604/cmc.2021.012874" @default.
- W3119002188 hasPublicationYear "2021" @default.
- W3119002188 type Work @default.
- W3119002188 sameAs 3119002188 @default.
- W3119002188 citedByCount "49" @default.
- W3119002188 countsByYear W31190021882021 @default.
- W3119002188 countsByYear W31190021882022 @default.
- W3119002188 countsByYear W31190021882023 @default.
- W3119002188 crossrefType "journal-article" @default.
- W3119002188 hasAuthorship W3119002188A5009368063 @default.
- W3119002188 hasAuthorship W3119002188A5016511172 @default.
- W3119002188 hasAuthorship W3119002188A5023041667 @default.
- W3119002188 hasAuthorship W3119002188A5027184951 @default.
- W3119002188 hasAuthorship W3119002188A5028149208 @default.
- W3119002188 hasAuthorship W3119002188A5049763844 @default.
- W3119002188 hasAuthorship W3119002188A5073594851 @default.
- W3119002188 hasAuthorship W3119002188A5083743482 @default.
- W3119002188 hasAuthorship W3119002188A5089923255 @default.
- W3119002188 hasBestOaLocation W31190021881 @default.
- W3119002188 hasConcept C108583219 @default.
- W3119002188 hasConcept C114614502 @default.
- W3119002188 hasConcept C116834253 @default.
- W3119002188 hasConcept C119857082 @default.
- W3119002188 hasConcept C122280245 @default.
- W3119002188 hasConcept C12267149 @default.
- W3119002188 hasConcept C142724271 @default.
- W3119002188 hasConcept C153180895 @default.
- W3119002188 hasConcept C154945302 @default.
- W3119002188 hasConcept C2779134260 @default.
- W3119002188 hasConcept C3008058167 @default.
- W3119002188 hasConcept C33923547 @default.
- W3119002188 hasConcept C41008148 @default.
- W3119002188 hasConcept C50644808 @default.
- W3119002188 hasConcept C524204448 @default.
- W3119002188 hasConcept C52622490 @default.
- W3119002188 hasConcept C59822182 @default.
- W3119002188 hasConcept C71924100 @default.
- W3119002188 hasConcept C74193536 @default.
- W3119002188 hasConcept C75866337 @default.
- W3119002188 hasConcept C84525736 @default.
- W3119002188 hasConcept C86803240 @default.
- W3119002188 hasConceptScore W3119002188C108583219 @default.
- W3119002188 hasConceptScore W3119002188C114614502 @default.
- W3119002188 hasConceptScore W3119002188C116834253 @default.
- W3119002188 hasConceptScore W3119002188C119857082 @default.
- W3119002188 hasConceptScore W3119002188C122280245 @default.
- W3119002188 hasConceptScore W3119002188C12267149 @default.
- W3119002188 hasConceptScore W3119002188C142724271 @default.