Matches in SemOpenAlex for { <https://semopenalex.org/work/W3119005585> ?p ?o ?g. }
- W3119005585 endingPage "011701" @default.
- W3119005585 startingPage "011701" @default.
- W3119005585 abstract "Recent applications of machine learning, in particular deep learning, motivate the need to address the generalizability of the statistical inference approaches in physical sciences. In this letter, we introduce a modular physics guided machine learning framework to improve the accuracy of such data-driven predictive engines. The chief idea in our approach is to augment the knowledge of the simplified theories with the underlying learning process. To emphasise on their physical importance, our architecture consists of adding certain features at intermediate layers rather than in the input layer. To demonstrate our approach, we select a canonical airfoil aerodynamic problem with the enhancement of the potential flow theory. We include features obtained by a panel method that can be computed efficiently for an unseen configuration in our training procedure. By addressing the generalizability concerns, our results suggest that the proposed feature enhancement approach can be effectively used in many scientific machine learning applications, especially for the systems where we can use a theoretical, empirical, or simplified model to guide the learning module." @default.
- W3119005585 created "2021-01-18" @default.
- W3119005585 creator A5028149900 @default.
- W3119005585 creator A5032407979 @default.
- W3119005585 creator A5072774082 @default.
- W3119005585 creator A5078880740 @default.
- W3119005585 creator A5085671233 @default.
- W3119005585 date "2021-01-01" @default.
- W3119005585 modified "2023-10-16" @default.
- W3119005585 title "Physics guided machine learning using simplified theories" @default.
- W3119005585 cites W1913674463 @default.
- W3119005585 cites W2017872144 @default.
- W3119005585 cites W2046372172 @default.
- W3119005585 cites W2083307976 @default.
- W3119005585 cites W2092398714 @default.
- W3119005585 cites W2129832613 @default.
- W3119005585 cites W2137983211 @default.
- W3119005585 cites W2147177966 @default.
- W3119005585 cites W2155482699 @default.
- W3119005585 cites W2156238536 @default.
- W3119005585 cites W2163577891 @default.
- W3119005585 cites W2171595752 @default.
- W3119005585 cites W2782714865 @default.
- W3119005585 cites W2807826281 @default.
- W3119005585 cites W2885397520 @default.
- W3119005585 cites W2887856035 @default.
- W3119005585 cites W2899283552 @default.
- W3119005585 cites W2907955265 @default.
- W3119005585 cites W2908541468 @default.
- W3119005585 cites W2946771678 @default.
- W3119005585 cites W2948567396 @default.
- W3119005585 cites W2951392159 @default.
- W3119005585 cites W2981080108 @default.
- W3119005585 cites W3003667836 @default.
- W3119005585 cites W3008005432 @default.
- W3119005585 cites W3012007521 @default.
- W3119005585 cites W3014674130 @default.
- W3119005585 cites W3028069279 @default.
- W3119005585 cites W3036736060 @default.
- W3119005585 cites W3046812802 @default.
- W3119005585 cites W3093510483 @default.
- W3119005585 cites W3103236380 @default.
- W3119005585 cites W3105245152 @default.
- W3119005585 cites W3123883114 @default.
- W3119005585 cites W2883186353 @default.
- W3119005585 doi "https://doi.org/10.1063/5.0038929" @default.
- W3119005585 hasPublicationYear "2021" @default.
- W3119005585 type Work @default.
- W3119005585 sameAs 3119005585 @default.
- W3119005585 citedByCount "61" @default.
- W3119005585 countsByYear W31190055852021 @default.
- W3119005585 countsByYear W31190055852022 @default.
- W3119005585 countsByYear W31190055852023 @default.
- W3119005585 crossrefType "journal-article" @default.
- W3119005585 hasAuthorship W3119005585A5028149900 @default.
- W3119005585 hasAuthorship W3119005585A5032407979 @default.
- W3119005585 hasAuthorship W3119005585A5072774082 @default.
- W3119005585 hasAuthorship W3119005585A5078880740 @default.
- W3119005585 hasAuthorship W3119005585A5085671233 @default.
- W3119005585 hasBestOaLocation W31190055851 @default.
- W3119005585 hasConcept C101468663 @default.
- W3119005585 hasConcept C105795698 @default.
- W3119005585 hasConcept C108583219 @default.
- W3119005585 hasConcept C111919701 @default.
- W3119005585 hasConcept C112124176 @default.
- W3119005585 hasConcept C119857082 @default.
- W3119005585 hasConcept C121332964 @default.
- W3119005585 hasConcept C154945302 @default.
- W3119005585 hasConcept C27158222 @default.
- W3119005585 hasConcept C2776214188 @default.
- W3119005585 hasConcept C33923547 @default.
- W3119005585 hasConcept C41008148 @default.
- W3119005585 hasConcept C57879066 @default.
- W3119005585 hasConcept C98045186 @default.
- W3119005585 hasConceptScore W3119005585C101468663 @default.
- W3119005585 hasConceptScore W3119005585C105795698 @default.
- W3119005585 hasConceptScore W3119005585C108583219 @default.
- W3119005585 hasConceptScore W3119005585C111919701 @default.
- W3119005585 hasConceptScore W3119005585C112124176 @default.
- W3119005585 hasConceptScore W3119005585C119857082 @default.
- W3119005585 hasConceptScore W3119005585C121332964 @default.
- W3119005585 hasConceptScore W3119005585C154945302 @default.
- W3119005585 hasConceptScore W3119005585C27158222 @default.
- W3119005585 hasConceptScore W3119005585C2776214188 @default.
- W3119005585 hasConceptScore W3119005585C33923547 @default.
- W3119005585 hasConceptScore W3119005585C41008148 @default.
- W3119005585 hasConceptScore W3119005585C57879066 @default.
- W3119005585 hasConceptScore W3119005585C98045186 @default.
- W3119005585 hasFunder F4320306084 @default.
- W3119005585 hasIssue "1" @default.
- W3119005585 hasLocation W31190055851 @default.
- W3119005585 hasLocation W31190055852 @default.
- W3119005585 hasLocation W31190055853 @default.
- W3119005585 hasLocation W31190055854 @default.
- W3119005585 hasOpenAccess W3119005585 @default.
- W3119005585 hasPrimaryLocation W31190055851 @default.
- W3119005585 hasRelatedWork W2511279186 @default.
- W3119005585 hasRelatedWork W3014300295 @default.