Matches in SemOpenAlex for { <https://semopenalex.org/work/W3119008923> ?p ?o ?g. }
- W3119008923 endingPage "557" @default.
- W3119008923 startingPage "541" @default.
- W3119008923 abstract "In this paper, we introduce a novel suspect-and-investigate framework, which can be easily embedded in a drone for automated parking violation detection (PVD). Our proposed framework consists of: 1) SwiftFlow, an efficient and accurate convolutional neural network (CNN) for unsupervised optical flow estimation; 2) Flow-RCNN, a flow-guided CNN for car detection and classification; and 3) an illegally parked car (IPC) candidate investigation module developed based on visual SLAM. The proposed framework was successfully embedded in a drone from ATG Robotics. The experimental results demonstrate that, firstly, our proposed SwiftFlow outperforms all other state-of-the-art unsupervised optical flow estimation approaches in terms of both speed and accuracy; secondly, IPC candidates can be effectively and efficiently detected by our proposed Flow-RCNN, with a better performance than our baseline network, Faster-RCNN; finally, the actual IPCs can be successfully verified by our investigation module after drone re-localization." @default.
- W3119008923 created "2021-01-18" @default.
- W3119008923 creator A5006978369 @default.
- W3119008923 creator A5019056174 @default.
- W3119008923 creator A5037309048 @default.
- W3119008923 creator A5038867899 @default.
- W3119008923 creator A5039139864 @default.
- W3119008923 creator A5039283962 @default.
- W3119008923 creator A5061130224 @default.
- W3119008923 creator A5065736435 @default.
- W3119008923 creator A5082438256 @default.
- W3119008923 creator A5086183556 @default.
- W3119008923 creator A5090100523 @default.
- W3119008923 date "2020-01-01" @default.
- W3119008923 modified "2023-10-18" @default.
- W3119008923 title "ATG-PVD: Ticketing Parking Violations on a Drone" @default.
- W3119008923 cites W1536680647 @default.
- W3119008923 cites W1578985305 @default.
- W3119008923 cites W1867429401 @default.
- W3119008923 cites W1970504153 @default.
- W3119008923 cites W2017381044 @default.
- W3119008923 cites W2108134361 @default.
- W3119008923 cites W2150066425 @default.
- W3119008923 cites W2151290401 @default.
- W3119008923 cites W2156177012 @default.
- W3119008923 cites W2286655030 @default.
- W3119008923 cites W2474281075 @default.
- W3119008923 cites W2518088625 @default.
- W3119008923 cites W2601564443 @default.
- W3119008923 cites W2604909019 @default.
- W3119008923 cites W2606794968 @default.
- W3119008923 cites W2884561390 @default.
- W3119008923 cites W2887751724 @default.
- W3119008923 cites W2904340070 @default.
- W3119008923 cites W2962864875 @default.
- W3119008923 cites W2963782415 @default.
- W3119008923 cites W2963891416 @default.
- W3119008923 cites W2964156315 @default.
- W3119008923 cites W2964226622 @default.
- W3119008923 cites W2967043539 @default.
- W3119008923 cites W2980116241 @default.
- W3119008923 cites W3012573144 @default.
- W3119008923 cites W3015292533 @default.
- W3119008923 cites W3034308492 @default.
- W3119008923 cites W3034848995 @default.
- W3119008923 cites W3090298435 @default.
- W3119008923 cites W3098467253 @default.
- W3119008923 cites W3102327032 @default.
- W3119008923 cites W3103648783 @default.
- W3119008923 cites W3108086282 @default.
- W3119008923 cites W612478963 @default.
- W3119008923 cites W639708223 @default.
- W3119008923 cites W764651262 @default.
- W3119008923 doi "https://doi.org/10.1007/978-3-030-66823-5_32" @default.
- W3119008923 hasPublicationYear "2020" @default.
- W3119008923 type Work @default.
- W3119008923 sameAs 3119008923 @default.
- W3119008923 citedByCount "8" @default.
- W3119008923 countsByYear W31190089232020 @default.
- W3119008923 countsByYear W31190089232021 @default.
- W3119008923 countsByYear W31190089232023 @default.
- W3119008923 crossrefType "book-chapter" @default.
- W3119008923 hasAuthorship W3119008923A5006978369 @default.
- W3119008923 hasAuthorship W3119008923A5019056174 @default.
- W3119008923 hasAuthorship W3119008923A5037309048 @default.
- W3119008923 hasAuthorship W3119008923A5038867899 @default.
- W3119008923 hasAuthorship W3119008923A5039139864 @default.
- W3119008923 hasAuthorship W3119008923A5039283962 @default.
- W3119008923 hasAuthorship W3119008923A5061130224 @default.
- W3119008923 hasAuthorship W3119008923A5065736435 @default.
- W3119008923 hasAuthorship W3119008923A5082438256 @default.
- W3119008923 hasAuthorship W3119008923A5086183556 @default.
- W3119008923 hasAuthorship W3119008923A5090100523 @default.
- W3119008923 hasBestOaLocation W31190089232 @default.
- W3119008923 hasConcept C108583219 @default.
- W3119008923 hasConcept C115961682 @default.
- W3119008923 hasConcept C153180895 @default.
- W3119008923 hasConcept C154945302 @default.
- W3119008923 hasConcept C155542232 @default.
- W3119008923 hasConcept C31972630 @default.
- W3119008923 hasConcept C41008148 @default.
- W3119008923 hasConcept C54355233 @default.
- W3119008923 hasConcept C59519942 @default.
- W3119008923 hasConcept C79403827 @default.
- W3119008923 hasConcept C81363708 @default.
- W3119008923 hasConcept C86803240 @default.
- W3119008923 hasConceptScore W3119008923C108583219 @default.
- W3119008923 hasConceptScore W3119008923C115961682 @default.
- W3119008923 hasConceptScore W3119008923C153180895 @default.
- W3119008923 hasConceptScore W3119008923C154945302 @default.
- W3119008923 hasConceptScore W3119008923C155542232 @default.
- W3119008923 hasConceptScore W3119008923C31972630 @default.
- W3119008923 hasConceptScore W3119008923C41008148 @default.
- W3119008923 hasConceptScore W3119008923C54355233 @default.
- W3119008923 hasConceptScore W3119008923C59519942 @default.
- W3119008923 hasConceptScore W3119008923C79403827 @default.
- W3119008923 hasConceptScore W3119008923C81363708 @default.
- W3119008923 hasConceptScore W3119008923C86803240 @default.