Matches in SemOpenAlex for { <https://semopenalex.org/work/W3119013695> ?p ?o ?g. }
- W3119013695 endingPage "T384" @default.
- W3119013695 startingPage "T373" @default.
- W3119013695 abstract "Understanding pore growth is of great significance to investigating reservoir performance in shale-gas systems. However, different from the marine shale reservoir, the lacustrine shale reservoir is commonly rich in clay minerals, resulting in a complicated and poorly understood pore system. We have investigated the impact of coexisting clay mineral and organic matter on pore growth in the Lower Jurassic Da’anzhai Shale in the Northeast Sichuan Basin, West China, through performing total organic carbon (TOC) analysis, X-ray diffraction, field-emission scanning electron microscopy, focused ion beam-scanning electron microscopy (FIB-SEM), [Formula: see text] and [Formula: see text] adsorption experiment, and high-pressure mercury intrusion porosimetry. Our results indicate that the Da’anzhai Shale is dominated by clay-mineral-hosted pores, which are commonly filled or partly filled by pyrobitumen. Controlled by organic maceral, organic pores are poorly and heterogeneously developed in pyrobitumen, and minor or even no organic pores grow in vitrinite. Mesopore and macropore are popular in the Da’anzhai Shale reservoir with complex shapes, e.g., slit- or plate-like shapes combined with “ink-bottle” shapes, confirming a pore system dominated by clay-mineral-hosted pores. The weak positive correlation between the clay mineral content and the meso/macropore volume confirms that the clay mineral is a positive contributor to the storage space, and the weak negative correlation between the TOC and the mesopore volume suggests that infilling of pyrobitumen decreases the pore volume significantly. Similar correlations occur between specific surface area and clay mineral/TOC. FIB-SEM observation confirms that the pore system, e.g., the pore size, pore shape, and pore volume, is controlled by the coexisting clay mineral and pyrobitumen filling in a later stage. The calculated plane porosity of the initial inorganic pore and the unfilled inorganic pore in the Da’anzhai Shale is in the range of 3.66%–10.95% and 0.79%–1.46%, respectively, suggesting that 76.66% of inorganic pores is inactive due to pyrobitumen filling. All of this evidence suggests that pore growth in the Da’anzhai Shale is positively contributed by clay minerals, but it is negatively contributed by pyrobitumen filling. Further discussion suggests that pyrobitumen infilling between clay minerals in the Da’anzhai lacustrine shale can decrease the original pore volume significantly, which work together to govern the pore system in shale reservoirs." @default.
- W3119013695 created "2021-01-18" @default.
- W3119013695 creator A5007610265 @default.
- W3119013695 creator A5021542033 @default.
- W3119013695 creator A5027381129 @default.
- W3119013695 creator A5070644920 @default.
- W3119013695 creator A5084090549 @default.
- W3119013695 creator A5085044467 @default.
- W3119013695 date "2021-03-11" @default.
- W3119013695 modified "2023-10-14" @default.
- W3119013695 title "Impact of coexisting clay minerals and organic matter on pore growth in the Lower Jurassic Da’anzhai lacustrine shale reservoir in the Northeast Sichuan Basin, West China" @default.
- W3119013695 cites W1980073009 @default.
- W3119013695 cites W1980704616 @default.
- W3119013695 cites W1991542088 @default.
- W3119013695 cites W2006145317 @default.
- W3119013695 cites W2011254969 @default.
- W3119013695 cites W2015502481 @default.
- W3119013695 cites W2027595482 @default.
- W3119013695 cites W2027744555 @default.
- W3119013695 cites W2047404361 @default.
- W3119013695 cites W2050888392 @default.
- W3119013695 cites W2051882304 @default.
- W3119013695 cites W2060775228 @default.
- W3119013695 cites W2071771565 @default.
- W3119013695 cites W2073101076 @default.
- W3119013695 cites W2113463282 @default.
- W3119013695 cites W2127199051 @default.
- W3119013695 cites W2140962967 @default.
- W3119013695 cites W2157354465 @default.
- W3119013695 cites W2204769636 @default.
- W3119013695 cites W2312199777 @default.
- W3119013695 cites W2336161903 @default.
- W3119013695 cites W2410619729 @default.
- W3119013695 cites W2520504205 @default.
- W3119013695 cites W2564960604 @default.
- W3119013695 cites W2568919292 @default.
- W3119013695 cites W2764196903 @default.
- W3119013695 cites W2780468729 @default.
- W3119013695 cites W2799754665 @default.
- W3119013695 cites W2807539848 @default.
- W3119013695 cites W2897674569 @default.
- W3119013695 cites W2898249977 @default.
- W3119013695 cites W2898601833 @default.
- W3119013695 cites W2900346162 @default.
- W3119013695 cites W2948112250 @default.
- W3119013695 cites W2964935799 @default.
- W3119013695 cites W2966965406 @default.
- W3119013695 cites W3007249000 @default.
- W3119013695 doi "https://doi.org/10.1190/int-2020-0141.1" @default.
- W3119013695 hasPublicationYear "2021" @default.
- W3119013695 type Work @default.
- W3119013695 sameAs 3119013695 @default.
- W3119013695 citedByCount "2" @default.
- W3119013695 countsByYear W31190136952022 @default.
- W3119013695 countsByYear W31190136952023 @default.
- W3119013695 crossrefType "journal-article" @default.
- W3119013695 hasAuthorship W3119013695A5007610265 @default.
- W3119013695 hasAuthorship W3119013695A5021542033 @default.
- W3119013695 hasAuthorship W3119013695A5027381129 @default.
- W3119013695 hasAuthorship W3119013695A5070644920 @default.
- W3119013695 hasAuthorship W3119013695A5084090549 @default.
- W3119013695 hasAuthorship W3119013695A5085044467 @default.
- W3119013695 hasConcept C107872376 @default.
- W3119013695 hasConcept C115393850 @default.
- W3119013695 hasConcept C127313418 @default.
- W3119013695 hasConcept C130452526 @default.
- W3119013695 hasConcept C151730666 @default.
- W3119013695 hasConcept C153127940 @default.
- W3119013695 hasConcept C158787203 @default.
- W3119013695 hasConcept C161790260 @default.
- W3119013695 hasConcept C17409809 @default.
- W3119013695 hasConcept C178790620 @default.
- W3119013695 hasConcept C185592680 @default.
- W3119013695 hasConcept C199289684 @default.
- W3119013695 hasConcept C2776062231 @default.
- W3119013695 hasConcept C2776432453 @default.
- W3119013695 hasConcept C30370900 @default.
- W3119013695 hasConcept C40212044 @default.
- W3119013695 hasConcept C48743137 @default.
- W3119013695 hasConcept C55493867 @default.
- W3119013695 hasConcept C57924286 @default.
- W3119013695 hasConcept C59235061 @default.
- W3119013695 hasConcept C82776694 @default.
- W3119013695 hasConceptScore W3119013695C107872376 @default.
- W3119013695 hasConceptScore W3119013695C115393850 @default.
- W3119013695 hasConceptScore W3119013695C127313418 @default.
- W3119013695 hasConceptScore W3119013695C130452526 @default.
- W3119013695 hasConceptScore W3119013695C151730666 @default.
- W3119013695 hasConceptScore W3119013695C153127940 @default.
- W3119013695 hasConceptScore W3119013695C158787203 @default.
- W3119013695 hasConceptScore W3119013695C161790260 @default.
- W3119013695 hasConceptScore W3119013695C17409809 @default.
- W3119013695 hasConceptScore W3119013695C178790620 @default.
- W3119013695 hasConceptScore W3119013695C185592680 @default.
- W3119013695 hasConceptScore W3119013695C199289684 @default.
- W3119013695 hasConceptScore W3119013695C2776062231 @default.
- W3119013695 hasConceptScore W3119013695C2776432453 @default.
- W3119013695 hasConceptScore W3119013695C30370900 @default.