Matches in SemOpenAlex for { <https://semopenalex.org/work/W3119014727> ?p ?o ?g. }
- W3119014727 endingPage "104209" @default.
- W3119014727 startingPage "104209" @default.
- W3119014727 abstract "To realize the automatic diagnosis of cervical intraepithelial neoplasia (CIN) cases by preacetic acid test and postacetic acid test colposcopy images, this paper proposes a method of cervical precancerous lesion diagnosis based on multimodal feature changes. First, the preacetic acid test and postacetic acid test colposcopy images were registered based on cross-correlation and projection transformation, and then the cervical region was extracted by the k-means clustering algorithm. Finally, a deep learning network was used to extract features and classify the preacetic acid test and postacetic acid test cervical images after registration. Finally, the proposed method achieves a classification accuracy of 86.3%, a sensitivity of 84.1%, and a specificity of 89.8% in 60 test cases. Experimental results show that this method can make better use of the multimodal features of colposcopy images and has lower requirements for medical staff in the process of data acquisition. It has certain clinical significance in cervical cancer precancerous lesion screening systems." @default.
- W3119014727 created "2021-01-18" @default.
- W3119014727 creator A5020657814 @default.
- W3119014727 creator A5027835055 @default.
- W3119014727 creator A5049484854 @default.
- W3119014727 creator A5065111285 @default.
- W3119014727 creator A5072861069 @default.
- W3119014727 date "2021-03-01" @default.
- W3119014727 modified "2023-10-05" @default.
- W3119014727 title "Diagnosis of cervical precancerous lesions based on multimodal feature changes" @default.
- W3119014727 cites W2036109700 @default.
- W3119014727 cites W2045758880 @default.
- W3119014727 cites W2056252502 @default.
- W3119014727 cites W2106787323 @default.
- W3119014727 cites W2121732950 @default.
- W3119014727 cites W2135500874 @default.
- W3119014727 cites W2147359267 @default.
- W3119014727 cites W2201374517 @default.
- W3119014727 cites W2221837786 @default.
- W3119014727 cites W2523506545 @default.
- W3119014727 cites W2533621842 @default.
- W3119014727 cites W2566365134 @default.
- W3119014727 cites W2576787043 @default.
- W3119014727 cites W2598689477 @default.
- W3119014727 cites W2607444182 @default.
- W3119014727 cites W2620868979 @default.
- W3119014727 cites W2726042157 @default.
- W3119014727 cites W2727208268 @default.
- W3119014727 cites W2735974985 @default.
- W3119014727 cites W2792902314 @default.
- W3119014727 cites W2793939908 @default.
- W3119014727 cites W2799860118 @default.
- W3119014727 cites W2802494476 @default.
- W3119014727 cites W2803275818 @default.
- W3119014727 cites W2889646458 @default.
- W3119014727 cites W2897821359 @default.
- W3119014727 cites W2900144270 @default.
- W3119014727 cites W2908716024 @default.
- W3119014727 cites W2917351544 @default.
- W3119014727 cites W2947029695 @default.
- W3119014727 cites W2949410220 @default.
- W3119014727 cites W2964166134 @default.
- W3119014727 cites W2969976771 @default.
- W3119014727 cites W2972574169 @default.
- W3119014727 cites W2974328964 @default.
- W3119014727 cites W2975497362 @default.
- W3119014727 cites W3021724357 @default.
- W3119014727 doi "https://doi.org/10.1016/j.compbiomed.2021.104209" @default.
- W3119014727 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33440316" @default.
- W3119014727 hasPublicationYear "2021" @default.
- W3119014727 type Work @default.
- W3119014727 sameAs 3119014727 @default.
- W3119014727 citedByCount "19" @default.
- W3119014727 countsByYear W31190147272021 @default.
- W3119014727 countsByYear W31190147272022 @default.
- W3119014727 countsByYear W31190147272023 @default.
- W3119014727 crossrefType "journal-article" @default.
- W3119014727 hasAuthorship W3119014727A5020657814 @default.
- W3119014727 hasAuthorship W3119014727A5027835055 @default.
- W3119014727 hasAuthorship W3119014727A5049484854 @default.
- W3119014727 hasAuthorship W3119014727A5065111285 @default.
- W3119014727 hasAuthorship W3119014727A5072861069 @default.
- W3119014727 hasConcept C121608353 @default.
- W3119014727 hasConcept C126322002 @default.
- W3119014727 hasConcept C138885662 @default.
- W3119014727 hasConcept C153180895 @default.
- W3119014727 hasConcept C154945302 @default.
- W3119014727 hasConcept C2776117191 @default.
- W3119014727 hasConcept C2776401178 @default.
- W3119014727 hasConcept C2777343196 @default.
- W3119014727 hasConcept C2778220009 @default.
- W3119014727 hasConcept C3020576462 @default.
- W3119014727 hasConcept C41008148 @default.
- W3119014727 hasConcept C41895202 @default.
- W3119014727 hasConcept C71924100 @default.
- W3119014727 hasConceptScore W3119014727C121608353 @default.
- W3119014727 hasConceptScore W3119014727C126322002 @default.
- W3119014727 hasConceptScore W3119014727C138885662 @default.
- W3119014727 hasConceptScore W3119014727C153180895 @default.
- W3119014727 hasConceptScore W3119014727C154945302 @default.
- W3119014727 hasConceptScore W3119014727C2776117191 @default.
- W3119014727 hasConceptScore W3119014727C2776401178 @default.
- W3119014727 hasConceptScore W3119014727C2777343196 @default.
- W3119014727 hasConceptScore W3119014727C2778220009 @default.
- W3119014727 hasConceptScore W3119014727C3020576462 @default.
- W3119014727 hasConceptScore W3119014727C41008148 @default.
- W3119014727 hasConceptScore W3119014727C41895202 @default.
- W3119014727 hasConceptScore W3119014727C71924100 @default.
- W3119014727 hasFunder F4320317312 @default.
- W3119014727 hasFunder F4320321001 @default.
- W3119014727 hasFunder F4320322665 @default.
- W3119014727 hasFunder F4320325626 @default.
- W3119014727 hasLocation W31190147271 @default.
- W3119014727 hasOpenAccess W3119014727 @default.
- W3119014727 hasPrimaryLocation W31190147271 @default.
- W3119014727 hasRelatedWork W2033795923 @default.
- W3119014727 hasRelatedWork W2359722769 @default.
- W3119014727 hasRelatedWork W2371746946 @default.