Matches in SemOpenAlex for { <https://semopenalex.org/work/W3119019146> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W3119019146 abstract "World health organization (WHO) reported that millions of people are killed and injured in road traffic crashes (RTC). The consequences of the increasing rate of traffic crashes include significant social and economic welfare loss. The severity of the RTC is an important element to investigate and address the welfare loss. Accurate prediction of RTC severity is beneficial to trauma centers as it generates crucial information that can be used to take the required actions that will help in reducing the aftermath of crashes. This study aims to evaluate the performance of deep neural network (DNN) in predicting the severity of traffic crash using attributes that can be identified quickly on crash sites. Moreover, the DNN model’s performance was compared with that of the support vector machine (SVM) model, which is widely used for traffic crash severity prediction. Compared to SVM, it was found that DNN is superior in predicting RTC severity with prediction accuracy and F1 score of 95% and 93% respectively." @default.
- W3119019146 created "2021-01-18" @default.
- W3119019146 creator A5085010945 @default.
- W3119019146 date "2020-12-20" @default.
- W3119019146 modified "2023-09-24" @default.
- W3119019146 title "Prediction of Traffic Crash Severity Using Deep Neural Networks: A Comparative Study" @default.
- W3119019146 cites W114517082 @default.
- W3119019146 cites W1932308016 @default.
- W3119019146 cites W1966398873 @default.
- W3119019146 cites W1969320611 @default.
- W3119019146 cites W1975836306 @default.
- W3119019146 cites W1978685211 @default.
- W3119019146 cites W1981808997 @default.
- W3119019146 cites W1987193935 @default.
- W3119019146 cites W1996020380 @default.
- W3119019146 cites W2007019606 @default.
- W3119019146 cites W2008973833 @default.
- W3119019146 cites W2012838480 @default.
- W3119019146 cites W2016701804 @default.
- W3119019146 cites W2016937228 @default.
- W3119019146 cites W2020399458 @default.
- W3119019146 cites W2030006306 @default.
- W3119019146 cites W2038175992 @default.
- W3119019146 cites W2046231891 @default.
- W3119019146 cites W2056381265 @default.
- W3119019146 cites W2059386649 @default.
- W3119019146 cites W2067710544 @default.
- W3119019146 cites W2087347434 @default.
- W3119019146 cites W2100372437 @default.
- W3119019146 cites W2108165405 @default.
- W3119019146 cites W2118938645 @default.
- W3119019146 cites W2124953793 @default.
- W3119019146 cites W2145961774 @default.
- W3119019146 cites W2292045100 @default.
- W3119019146 cites W2562005416 @default.
- W3119019146 cites W2590685879 @default.
- W3119019146 cites W2621409665 @default.
- W3119019146 cites W2750591756 @default.
- W3119019146 cites W2769686021 @default.
- W3119019146 cites W2771179281 @default.
- W3119019146 cites W2786070938 @default.
- W3119019146 cites W2810084952 @default.
- W3119019146 cites W2890907316 @default.
- W3119019146 cites W2902174104 @default.
- W3119019146 cites W2920056159 @default.
- W3119019146 cites W2944086006 @default.
- W3119019146 cites W2945476434 @default.
- W3119019146 cites W3023430131 @default.
- W3119019146 doi "https://doi.org/10.1109/3ict51146.2020.9311974" @default.
- W3119019146 hasPublicationYear "2020" @default.
- W3119019146 type Work @default.
- W3119019146 sameAs 3119019146 @default.
- W3119019146 citedByCount "5" @default.
- W3119019146 countsByYear W31190191462022 @default.
- W3119019146 countsByYear W31190191462023 @default.
- W3119019146 crossrefType "proceedings-article" @default.
- W3119019146 hasAuthorship W3119019146A5085010945 @default.
- W3119019146 hasConcept C127413603 @default.
- W3119019146 hasConcept C154945302 @default.
- W3119019146 hasConcept C183469790 @default.
- W3119019146 hasConcept C199360897 @default.
- W3119019146 hasConcept C22212356 @default.
- W3119019146 hasConcept C2985695025 @default.
- W3119019146 hasConcept C38652104 @default.
- W3119019146 hasConcept C41008148 @default.
- W3119019146 hasConcept C50644808 @default.
- W3119019146 hasConceptScore W3119019146C127413603 @default.
- W3119019146 hasConceptScore W3119019146C154945302 @default.
- W3119019146 hasConceptScore W3119019146C183469790 @default.
- W3119019146 hasConceptScore W3119019146C199360897 @default.
- W3119019146 hasConceptScore W3119019146C22212356 @default.
- W3119019146 hasConceptScore W3119019146C2985695025 @default.
- W3119019146 hasConceptScore W3119019146C38652104 @default.
- W3119019146 hasConceptScore W3119019146C41008148 @default.
- W3119019146 hasConceptScore W3119019146C50644808 @default.
- W3119019146 hasLocation W31190191461 @default.
- W3119019146 hasOpenAccess W3119019146 @default.
- W3119019146 hasPrimaryLocation W31190191461 @default.
- W3119019146 hasRelatedWork W190213723 @default.
- W3119019146 hasRelatedWork W2126260253 @default.
- W3119019146 hasRelatedWork W2386387936 @default.
- W3119019146 hasRelatedWork W2688713097 @default.
- W3119019146 hasRelatedWork W2795256611 @default.
- W3119019146 hasRelatedWork W3007967230 @default.
- W3119019146 hasRelatedWork W3037992666 @default.
- W3119019146 hasRelatedWork W3107474891 @default.
- W3119019146 hasRelatedWork W3147009868 @default.
- W3119019146 hasRelatedWork W1629725936 @default.
- W3119019146 isParatext "false" @default.
- W3119019146 isRetracted "false" @default.
- W3119019146 magId "3119019146" @default.
- W3119019146 workType "article" @default.