Matches in SemOpenAlex for { <https://semopenalex.org/work/W3119024830> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W3119024830 endingPage "5" @default.
- W3119024830 startingPage "1" @default.
- W3119024830 abstract "Urbanization in the Global South is often characterized by the proliferation of deprived neighborhoods (frequently referred to as slums). The reduction of the proportion of people living in slums is key for inclusiveness of urban areas and development and is specifically targeted by policies such as the SDG goal 11, which aims to “make cities and human settlements inclusive, safe, resilient and sustainable”. Consistent global information about the amount and spatial distribution of slums across cities in the Global South is needed to inform these policies and track progress. Unfortunately, such efforts are hampered by lacking, inaccessible, or outdated data. There is also often conceptual ambiguity of what is understood as a slum, informal settlement, or deprived neighborhood. There is a wide diversity in their appearance and perception within a single city, as well as at a global scale. To address this, we use the generic slum ontology (GSO) [1] and available spatial data to seek whether robust and transferable indicators with regional characteristics can be identified for global slum mapping efforts. The initial results of our analysis demonstrate that indicators such as building density and road characteristics in an image are potentially useful to describe differences between slum and non-slum built-up areas in the case-studies. This study highlights the opportunities of the GSO for the development of a global slum repository but also show the need of local adaptations and hence, the importance of the conceptualization of real-world features into image domain features. This understanding could be useful to upscale current algorithms. Further, we describe the gap between the geospatial data products developed in the remote sensing community and the information needed by policymakers and other user-groups. We discuss why an objective and transparent system for monitoring slums is needed to monitor global development goals as well as support local communities and NGOs. This becomes even more important in the time of global crisis like the spread of COVID-19 pandemic. Keywords urban planning, slums, informal settlements, poverty mapping, remote sensing, slum ontology; urban morphology 1. INTRODUCTION Accelerated urbanization in many Global South regions and the low capacity of the housing market to provide affordable housing to low-income groups contribute to the growth of slums (SDG indicator 11.1.1). Accurate, comprehensive and up-to-date spatial information of such areas, as well as their evolution at city scale, are needed for local decision-making and to support pro-poor development strategies. However, data are often inconsistent, outdated, or unavailable. Slums can be considered as “missing spaces” as they are often not mapped or not included in official maps. In most countries, administrative definitions or income-based indicators are used to differentiate urban slum and non-slum areas. Remote sensing (RS) studies have shown the capability of satellite imagery to provide consistent and timely information on the location and physical dynamics of slums [2]. Developments of the last years indicate the development of object-based [3] as well as machine-learning-based methods, in particular deep-learning, to provide technological solutions [4]. For example, combining RS and local (non-official) data with deep learning models to extensively map, explore and understand the spatiotemporal dynamics of slums with a temporal granularity adapted to the local slum dynamics (ranging from a few months in cities of very high dynamics to one or two years). However, most studies fail to provide a clear definition and operationalization of such areas." @default.
- W3119024830 created "2021-01-18" @default.
- W3119024830 creator A5059871347 @default.
- W3119024830 creator A5063850520 @default.
- W3119024830 creator A5078630837 @default.
- W3119024830 date "2020-08-24" @default.
- W3119024830 modified "2023-09-25" @default.
- W3119024830 title "Mapping the Missing spaces and the role of Generic Slum Ontology" @default.
- W3119024830 hasPublicationYear "2020" @default.
- W3119024830 type Work @default.
- W3119024830 sameAs 3119024830 @default.
- W3119024830 citedByCount "0" @default.
- W3119024830 crossrefType "proceedings-article" @default.
- W3119024830 hasAuthorship W3119024830A5059871347 @default.
- W3119024830 hasAuthorship W3119024830A5063850520 @default.
- W3119024830 hasAuthorship W3119024830A5078630837 @default.
- W3119024830 hasConcept C107826830 @default.
- W3119024830 hasConcept C127413603 @default.
- W3119024830 hasConcept C144024400 @default.
- W3119024830 hasConcept C147176958 @default.
- W3119024830 hasConcept C148383697 @default.
- W3119024830 hasConcept C148803439 @default.
- W3119024830 hasConcept C149923435 @default.
- W3119024830 hasConcept C154945302 @default.
- W3119024830 hasConcept C162324750 @default.
- W3119024830 hasConcept C16678853 @default.
- W3119024830 hasConcept C166957645 @default.
- W3119024830 hasConcept C205649164 @default.
- W3119024830 hasConcept C2778631157 @default.
- W3119024830 hasConcept C2908647359 @default.
- W3119024830 hasConcept C39853841 @default.
- W3119024830 hasConcept C41008148 @default.
- W3119024830 hasConcept C50522688 @default.
- W3119024830 hasConcept C90734943 @default.
- W3119024830 hasConcept C91375879 @default.
- W3119024830 hasConceptScore W3119024830C107826830 @default.
- W3119024830 hasConceptScore W3119024830C127413603 @default.
- W3119024830 hasConceptScore W3119024830C144024400 @default.
- W3119024830 hasConceptScore W3119024830C147176958 @default.
- W3119024830 hasConceptScore W3119024830C148383697 @default.
- W3119024830 hasConceptScore W3119024830C148803439 @default.
- W3119024830 hasConceptScore W3119024830C149923435 @default.
- W3119024830 hasConceptScore W3119024830C154945302 @default.
- W3119024830 hasConceptScore W3119024830C162324750 @default.
- W3119024830 hasConceptScore W3119024830C16678853 @default.
- W3119024830 hasConceptScore W3119024830C166957645 @default.
- W3119024830 hasConceptScore W3119024830C205649164 @default.
- W3119024830 hasConceptScore W3119024830C2778631157 @default.
- W3119024830 hasConceptScore W3119024830C2908647359 @default.
- W3119024830 hasConceptScore W3119024830C39853841 @default.
- W3119024830 hasConceptScore W3119024830C41008148 @default.
- W3119024830 hasConceptScore W3119024830C50522688 @default.
- W3119024830 hasConceptScore W3119024830C90734943 @default.
- W3119024830 hasConceptScore W3119024830C91375879 @default.
- W3119024830 hasLocation W31190248301 @default.
- W3119024830 hasOpenAccess W3119024830 @default.
- W3119024830 hasPrimaryLocation W31190248301 @default.
- W3119024830 hasRelatedWork W2347090122 @default.
- W3119024830 hasRelatedWork W2532805479 @default.
- W3119024830 hasRelatedWork W2611783609 @default.
- W3119024830 hasRelatedWork W2741507287 @default.
- W3119024830 hasRelatedWork W2787972439 @default.
- W3119024830 hasRelatedWork W2887417196 @default.
- W3119024830 hasRelatedWork W2888799501 @default.
- W3119024830 hasRelatedWork W2889072555 @default.
- W3119024830 hasRelatedWork W2901077311 @default.
- W3119024830 hasRelatedWork W2950473707 @default.
- W3119024830 hasRelatedWork W3013709343 @default.
- W3119024830 hasRelatedWork W3110972018 @default.
- W3119024830 hasRelatedWork W3115890738 @default.
- W3119024830 hasRelatedWork W3140045874 @default.
- W3119024830 hasRelatedWork W3159320010 @default.
- W3119024830 hasRelatedWork W3176913374 @default.
- W3119024830 hasRelatedWork W3203835877 @default.
- W3119024830 hasRelatedWork W3206938739 @default.
- W3119024830 hasRelatedWork W3213145908 @default.
- W3119024830 hasRelatedWork W2740588512 @default.
- W3119024830 isParatext "false" @default.
- W3119024830 isRetracted "false" @default.
- W3119024830 magId "3119024830" @default.
- W3119024830 workType "article" @default.