Matches in SemOpenAlex for { <https://semopenalex.org/work/W3119052010> ?p ?o ?g. }
- W3119052010 endingPage "468" @default.
- W3119052010 startingPage "456" @default.
- W3119052010 abstract "We developed a machine learning (ML) model that predicts the risk of a patient on hemodialysis (HD) having an undetected SARS-CoV-2 infection that is identified after the following ≥3 days.As part of a healthcare operations effort, we used patient data from a national network of dialysis clinics (February-September 2020) to develop an ML model (XGBoost) that uses 81 variables to predict the likelihood of an adult patient on HD having an undetected SARS-CoV-2 infection that is identified in the subsequent ≥3 days. We used a 60%:20%:20% randomized split of COVID-19-positive samples for the training, validation, and testing datasets.We used a select cohort of 40,490 patients on HD to build the ML model (11,166 patients who were COVID-19 positive and 29,324 patients who were unaffected controls). The prevalence of COVID-19 in the cohort (28% COVID-19 positive) was by design higher than the HD population. The prevalence of COVID-19 was set to 10% in the testing dataset to estimate the prevalence observed in the national HD population. The threshold for classifying observations as positive or negative was set at 0.80 to minimize false positives. Precision for the model was 0.52, the recall was 0.07, and the lift was 5.3 in the testing dataset. Area under the receiver operating characteristic curve (AUROC) and area under the precision-recall curve (AUPRC) for the model was 0.68 and 0.24 in the testing dataset, respectively. Top predictors of a patient on HD having a SARS-CoV-2 infection were the change in interdialytic weight gain from the previous month, mean pre-HD body temperature in the prior week, and the change in post-HD heart rate from the previous month.The developed ML model appears suitable for predicting patients on HD at risk of having COVID-19 at least 3 days before there would be a clinical suspicion of the disease." @default.
- W3119052010 created "2021-01-18" @default.
- W3119052010 creator A5012810198 @default.
- W3119052010 creator A5020134962 @default.
- W3119052010 creator A5021638715 @default.
- W3119052010 creator A5022002223 @default.
- W3119052010 creator A5042652859 @default.
- W3119052010 creator A5042665049 @default.
- W3119052010 creator A5047609769 @default.
- W3119052010 creator A5048047792 @default.
- W3119052010 creator A5051536439 @default.
- W3119052010 creator A5054018228 @default.
- W3119052010 creator A5056363830 @default.
- W3119052010 creator A5060191565 @default.
- W3119052010 creator A5061871718 @default.
- W3119052010 creator A5069296608 @default.
- W3119052010 creator A5078004794 @default.
- W3119052010 creator A5083853001 @default.
- W3119052010 date "2021-03-01" @default.
- W3119052010 modified "2023-09-27" @default.
- W3119052010 title "Machine Learning for Prediction of Patients on Hemodialysis with an Undetected SARS-CoV-2 Infection" @default.
- W3119052010 cites W1966716734 @default.
- W3119052010 cites W2098701911 @default.
- W3119052010 cites W2129888542 @default.
- W3119052010 cites W2999612210 @default.
- W3119052010 cites W2999615587 @default.
- W3119052010 cites W3008401431 @default.
- W3119052010 cites W3009885589 @default.
- W3119052010 cites W3010679714 @default.
- W3119052010 cites W3011562665 @default.
- W3119052010 cites W3011605790 @default.
- W3119052010 cites W3012736895 @default.
- W3119052010 cites W3012824507 @default.
- W3119052010 cites W3013231340 @default.
- W3119052010 cites W3013238747 @default.
- W3119052010 cites W3013758358 @default.
- W3119052010 cites W3014242527 @default.
- W3119052010 cites W3014442018 @default.
- W3119052010 cites W3014524604 @default.
- W3119052010 cites W3015233121 @default.
- W3119052010 cites W3015552915 @default.
- W3119052010 cites W3015553111 @default.
- W3119052010 cites W3015696390 @default.
- W3119052010 cites W3015713899 @default.
- W3119052010 cites W3016503001 @default.
- W3119052010 cites W3017117984 @default.
- W3119052010 cites W3017655871 @default.
- W3119052010 cites W3021742658 @default.
- W3119052010 cites W3033780566 @default.
- W3119052010 cites W3039313548 @default.
- W3119052010 cites W3046714711 @default.
- W3119052010 cites W3087816957 @default.
- W3119052010 cites W3089010823 @default.
- W3119052010 doi "https://doi.org/10.34067/kid.0003802020" @default.
- W3119052010 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35369017" @default.
- W3119052010 hasPublicationYear "2021" @default.
- W3119052010 type Work @default.
- W3119052010 sameAs 3119052010 @default.
- W3119052010 citedByCount "12" @default.
- W3119052010 countsByYear W31190520102021 @default.
- W3119052010 countsByYear W31190520102022 @default.
- W3119052010 countsByYear W31190520102023 @default.
- W3119052010 crossrefType "journal-article" @default.
- W3119052010 hasAuthorship W3119052010A5012810198 @default.
- W3119052010 hasAuthorship W3119052010A5020134962 @default.
- W3119052010 hasAuthorship W3119052010A5021638715 @default.
- W3119052010 hasAuthorship W3119052010A5022002223 @default.
- W3119052010 hasAuthorship W3119052010A5042652859 @default.
- W3119052010 hasAuthorship W3119052010A5042665049 @default.
- W3119052010 hasAuthorship W3119052010A5047609769 @default.
- W3119052010 hasAuthorship W3119052010A5048047792 @default.
- W3119052010 hasAuthorship W3119052010A5051536439 @default.
- W3119052010 hasAuthorship W3119052010A5054018228 @default.
- W3119052010 hasAuthorship W3119052010A5056363830 @default.
- W3119052010 hasAuthorship W3119052010A5060191565 @default.
- W3119052010 hasAuthorship W3119052010A5061871718 @default.
- W3119052010 hasAuthorship W3119052010A5069296608 @default.
- W3119052010 hasAuthorship W3119052010A5078004794 @default.
- W3119052010 hasAuthorship W3119052010A5083853001 @default.
- W3119052010 hasBestOaLocation W31190520101 @default.
- W3119052010 hasConcept C105795698 @default.
- W3119052010 hasConcept C121332964 @default.
- W3119052010 hasConcept C126322002 @default.
- W3119052010 hasConcept C154945302 @default.
- W3119052010 hasConcept C194828623 @default.
- W3119052010 hasConcept C2778063415 @default.
- W3119052010 hasConcept C2778217198 @default.
- W3119052010 hasConcept C2779134260 @default.
- W3119052010 hasConcept C2908647359 @default.
- W3119052010 hasConcept C3008058167 @default.
- W3119052010 hasConcept C33923547 @default.
- W3119052010 hasConcept C41008148 @default.
- W3119052010 hasConcept C524204448 @default.
- W3119052010 hasConcept C58471807 @default.
- W3119052010 hasConcept C62520636 @default.
- W3119052010 hasConcept C64869954 @default.
- W3119052010 hasConcept C71924100 @default.
- W3119052010 hasConcept C72563966 @default.