Matches in SemOpenAlex for { <https://semopenalex.org/work/W3119074785> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W3119074785 abstract "Abstract Successful training of convolutional neural networks (CNNs) requires a substantial amount of data. With small datasets networks generalize poorly. Data Augmentation techniques improve the generalizability of neural networks by using existing training data more effectively. Standard data augmentation methods, however, produce limited plausible alternative data. Generative Adversarial Networks (GANs) have been utilized to generate new data and improve the performance of CNNs. Nevertheless, data augmentation techniques for training GANs are under-explored compared to CNNs. In this work, we propose a new GAN architecture for augmentation of chest X-rays for semi-supervised detection of pneumonia and COVID-19 using generative models. We show that the proposed GAN can be used to effectively augment data and improve classification accuracy of disease in chest X-rays for pneumonia and COVID-19. We compare our augmentation GAN model with Deep Convolutional GAN and traditional augmentation methods (rotate, zoom, etc) on two different X-ray datasets and show our GAN-based augmentation method surpasses other augmentation methods for training a GAN in detecting anomalies in X-ray images." @default.
- W3119074785 created "2021-01-18" @default.
- W3119074785 creator A5034208717 @default.
- W3119074785 creator A5069757332 @default.
- W3119074785 creator A5083870289 @default.
- W3119074785 date "2021-01-16" @default.
- W3119074785 modified "2023-09-23" @default.
- W3119074785 title "Data Augmentation Using Generative Adversarial Networks (GANs) For GAN-Based Detection Of Pneumonia And COVID-19 In Chest X-Ray Images" @default.
- W3119074785 cites W1677182931 @default.
- W3119074785 cites W1901129140 @default.
- W3119074785 cites W1904878066 @default.
- W3119074785 cites W2125389028 @default.
- W3119074785 cites W2173520492 @default.
- W3119074785 cites W2183341477 @default.
- W3119074785 cites W2194775991 @default.
- W3119074785 cites W2328176404 @default.
- W3119074785 cites W2577946330 @default.
- W3119074785 cites W2599354622 @default.
- W3119074785 cites W2758007480 @default.
- W3119074785 cites W2770173563 @default.
- W3119074785 cites W2775288145 @default.
- W3119074785 cites W2798251715 @default.
- W3119074785 cites W2804078698 @default.
- W3119074785 cites W2974035007 @default.
- W3119074785 cites W2984306354 @default.
- W3119074785 cites W3013019084 @default.
- W3119074785 cites W3013564598 @default.
- W3119074785 cites W3016970897 @default.
- W3119074785 cites W3017855299 @default.
- W3119074785 cites W3085109610 @default.
- W3119074785 cites W3104809143 @default.
- W3119074785 cites W3105081694 @default.
- W3119074785 cites W3182080444 @default.
- W3119074785 doi "https://doi.org/10.21203/rs.3.rs-146161/v1" @default.
- W3119074785 hasPublicationYear "2021" @default.
- W3119074785 type Work @default.
- W3119074785 sameAs 3119074785 @default.
- W3119074785 citedByCount "5" @default.
- W3119074785 countsByYear W31190747852021 @default.
- W3119074785 countsByYear W31190747852022 @default.
- W3119074785 countsByYear W31190747852023 @default.
- W3119074785 crossrefType "posted-content" @default.
- W3119074785 hasAuthorship W3119074785A5034208717 @default.
- W3119074785 hasAuthorship W3119074785A5069757332 @default.
- W3119074785 hasAuthorship W3119074785A5083870289 @default.
- W3119074785 hasBestOaLocation W31190747851 @default.
- W3119074785 hasConcept C105795698 @default.
- W3119074785 hasConcept C108583219 @default.
- W3119074785 hasConcept C119857082 @default.
- W3119074785 hasConcept C153180895 @default.
- W3119074785 hasConcept C154945302 @default.
- W3119074785 hasConcept C27158222 @default.
- W3119074785 hasConcept C2988773926 @default.
- W3119074785 hasConcept C33923547 @default.
- W3119074785 hasConcept C41008148 @default.
- W3119074785 hasConcept C50644808 @default.
- W3119074785 hasConcept C51632099 @default.
- W3119074785 hasConcept C81363708 @default.
- W3119074785 hasConceptScore W3119074785C105795698 @default.
- W3119074785 hasConceptScore W3119074785C108583219 @default.
- W3119074785 hasConceptScore W3119074785C119857082 @default.
- W3119074785 hasConceptScore W3119074785C153180895 @default.
- W3119074785 hasConceptScore W3119074785C154945302 @default.
- W3119074785 hasConceptScore W3119074785C27158222 @default.
- W3119074785 hasConceptScore W3119074785C2988773926 @default.
- W3119074785 hasConceptScore W3119074785C33923547 @default.
- W3119074785 hasConceptScore W3119074785C41008148 @default.
- W3119074785 hasConceptScore W3119074785C50644808 @default.
- W3119074785 hasConceptScore W3119074785C51632099 @default.
- W3119074785 hasConceptScore W3119074785C81363708 @default.
- W3119074785 hasLocation W31190747851 @default.
- W3119074785 hasLocation W31190747852 @default.
- W3119074785 hasLocation W31190747853 @default.
- W3119074785 hasOpenAccess W3119074785 @default.
- W3119074785 hasPrimaryLocation W31190747851 @default.
- W3119074785 hasRelatedWork W2731899572 @default.
- W3119074785 hasRelatedWork W2999805992 @default.
- W3119074785 hasRelatedWork W3116150086 @default.
- W3119074785 hasRelatedWork W3133861977 @default.
- W3119074785 hasRelatedWork W4200173597 @default.
- W3119074785 hasRelatedWork W4291897433 @default.
- W3119074785 hasRelatedWork W4312417841 @default.
- W3119074785 hasRelatedWork W4321369474 @default.
- W3119074785 hasRelatedWork W4377224369 @default.
- W3119074785 hasRelatedWork W4380075502 @default.
- W3119074785 isParatext "false" @default.
- W3119074785 isRetracted "false" @default.
- W3119074785 magId "3119074785" @default.
- W3119074785 workType "article" @default.