Matches in SemOpenAlex for { <https://semopenalex.org/work/W3119134037> ?p ?o ?g. }
- W3119134037 endingPage "591" @default.
- W3119134037 startingPage "576" @default.
- W3119134037 abstract "Optical coherence tomography (OCT) is one of the most commonly used ophthalmic diagnostic techniques. Macular Edema (ME) is the swelling of the macular region in the eye. Segmentation of the fluid region in the retinal layer is an important step in detecting lesions. However, manual segmentation is often a time consuming and subjective process. In this paper, an improved U-Net segmentation method is proposed. In this method, the attention mechanism is introduced to automatically locate the fluid region, which avoids the problem of excessive calculation in multi-stage methods. At the same time, the use of dense skip connections which combines high-level and low-level features makes the segmentation results more precise. The loss function is a joint loss, including weighted binary cross entropy loss, dice loss, and regression loss, where regression loss is used to avoid the problem of merging multiple fluid regions into one. The experimental results show that the proposed method can adapt to the OCT scans acquired by various imaging scanning devices, and this method is more effective than other start-of-the-art fluid segmentation methods." @default.
- W3119134037 created "2021-01-18" @default.
- W3119134037 creator A5042973046 @default.
- W3119134037 creator A5051195044 @default.
- W3119134037 creator A5056036725 @default.
- W3119134037 creator A5056674934 @default.
- W3119134037 creator A5062139991 @default.
- W3119134037 date "2021-09-01" @default.
- W3119134037 modified "2023-09-29" @default.
- W3119134037 title "Automatic fluid segmentation in retinal optical coherence tomography images using attention based deep learning" @default.
- W3119134037 cites W1506913049 @default.
- W3119134037 cites W1901129140 @default.
- W3119134037 cites W1967981232 @default.
- W3119134037 cites W1977737282 @default.
- W3119134037 cites W1978201669 @default.
- W3119134037 cites W1993893886 @default.
- W3119134037 cites W2001318290 @default.
- W3119134037 cites W2010206770 @default.
- W3119134037 cites W2013488317 @default.
- W3119134037 cites W2018493531 @default.
- W3119134037 cites W2027528539 @default.
- W3119134037 cites W2030742428 @default.
- W3119134037 cites W2042733042 @default.
- W3119134037 cites W2058232500 @default.
- W3119134037 cites W2065350495 @default.
- W3119134037 cites W2074598933 @default.
- W3119134037 cites W2085300055 @default.
- W3119134037 cites W2106442491 @default.
- W3119134037 cites W2118656904 @default.
- W3119134037 cites W2132549764 @default.
- W3119134037 cites W2134542952 @default.
- W3119134037 cites W2150248355 @default.
- W3119134037 cites W2152883336 @default.
- W3119134037 cites W2192471031 @default.
- W3119134037 cites W2319638030 @default.
- W3119134037 cites W2326484406 @default.
- W3119134037 cites W2418802570 @default.
- W3119134037 cites W2480705741 @default.
- W3119134037 cites W2533800772 @default.
- W3119134037 cites W2548342201 @default.
- W3119134037 cites W2563705555 @default.
- W3119134037 cites W2592905743 @default.
- W3119134037 cites W2592929672 @default.
- W3119134037 cites W2606534623 @default.
- W3119134037 cites W2792141483 @default.
- W3119134037 cites W2792836735 @default.
- W3119134037 cites W2806398633 @default.
- W3119134037 cites W2883235649 @default.
- W3119134037 cites W2888358068 @default.
- W3119134037 cites W2905660188 @default.
- W3119134037 cites W2913747979 @default.
- W3119134037 cites W2944774584 @default.
- W3119134037 cites W2949122205 @default.
- W3119134037 cites W2964065611 @default.
- W3119134037 cites W2966275857 @default.
- W3119134037 cites W3003722571 @default.
- W3119134037 cites W3006655138 @default.
- W3119134037 cites W4252474341 @default.
- W3119134037 doi "https://doi.org/10.1016/j.neucom.2020.07.143" @default.
- W3119134037 hasPublicationYear "2021" @default.
- W3119134037 type Work @default.
- W3119134037 sameAs 3119134037 @default.
- W3119134037 citedByCount "29" @default.
- W3119134037 countsByYear W31191340372021 @default.
- W3119134037 countsByYear W31191340372022 @default.
- W3119134037 countsByYear W31191340372023 @default.
- W3119134037 crossrefType "journal-article" @default.
- W3119134037 hasAuthorship W3119134037A5042973046 @default.
- W3119134037 hasAuthorship W3119134037A5051195044 @default.
- W3119134037 hasAuthorship W3119134037A5056036725 @default.
- W3119134037 hasAuthorship W3119134037A5056674934 @default.
- W3119134037 hasAuthorship W3119134037A5062139991 @default.
- W3119134037 hasConcept C118487528 @default.
- W3119134037 hasConcept C124504099 @default.
- W3119134037 hasConcept C153180895 @default.
- W3119134037 hasConcept C154945302 @default.
- W3119134037 hasConcept C167981619 @default.
- W3119134037 hasConcept C2778818243 @default.
- W3119134037 hasConcept C31972630 @default.
- W3119134037 hasConcept C41008148 @default.
- W3119134037 hasConcept C71924100 @default.
- W3119134037 hasConcept C89600930 @default.
- W3119134037 hasConceptScore W3119134037C118487528 @default.
- W3119134037 hasConceptScore W3119134037C124504099 @default.
- W3119134037 hasConceptScore W3119134037C153180895 @default.
- W3119134037 hasConceptScore W3119134037C154945302 @default.
- W3119134037 hasConceptScore W3119134037C167981619 @default.
- W3119134037 hasConceptScore W3119134037C2778818243 @default.
- W3119134037 hasConceptScore W3119134037C31972630 @default.
- W3119134037 hasConceptScore W3119134037C41008148 @default.
- W3119134037 hasConceptScore W3119134037C71924100 @default.
- W3119134037 hasConceptScore W3119134037C89600930 @default.
- W3119134037 hasFunder F4320321001 @default.
- W3119134037 hasFunder F4320322186 @default.
- W3119134037 hasLocation W31191340371 @default.
- W3119134037 hasOpenAccess W3119134037 @default.
- W3119134037 hasPrimaryLocation W31191340371 @default.
- W3119134037 hasRelatedWork W1669643531 @default.