Matches in SemOpenAlex for { <https://semopenalex.org/work/W3119138210> ?p ?o ?g. }
- W3119138210 endingPage "112" @default.
- W3119138210 startingPage "112" @default.
- W3119138210 abstract "This study describes a method for classifying electrocorticograms (ECoGs) based on motor imagery (MI) on the brain–computer interface (BCI) system. This method is different from the traditional feature extraction and classification method. In this paper, the proposed method employs the deep learning algorithm for extracting features and the traditional algorithm for classification. Specifically, we mainly use the convolution neural network (CNN) to extract the features from the training data and then classify those features by combing with the gradient boosting (GB) algorithm. The comprehensive study with CNN and GB algorithms will profoundly help us to obtain more feature information from brain activities, enabling us to obtain the classification results from human body actions. The performance of the proposed framework has been evaluated on the dataset I of BCI Competition III. Furthermore, the combination of deep learning and traditional algorithms provides some ideas for future research with the BCI systems." @default.
- W3119138210 created "2021-01-18" @default.
- W3119138210 creator A5004432231 @default.
- W3119138210 creator A5017278295 @default.
- W3119138210 creator A5033327049 @default.
- W3119138210 creator A5040723634 @default.
- W3119138210 creator A5048898267 @default.
- W3119138210 creator A5070458137 @default.
- W3119138210 creator A5079311625 @default.
- W3119138210 creator A5080476738 @default.
- W3119138210 creator A5090263430 @default.
- W3119138210 date "2021-01-07" @default.
- W3119138210 modified "2023-09-30" @default.
- W3119138210 title "Representation Learning for Motor Imagery Recognition with Deep Neural Network" @default.
- W3119138210 cites W1963414467 @default.
- W3119138210 cites W1968717940 @default.
- W3119138210 cites W1970242638 @default.
- W3119138210 cites W1974028377 @default.
- W3119138210 cites W1977440949 @default.
- W3119138210 cites W1985063305 @default.
- W3119138210 cites W1997102466 @default.
- W3119138210 cites W1998698574 @default.
- W3119138210 cites W2006837676 @default.
- W3119138210 cites W2010371409 @default.
- W3119138210 cites W2024461202 @default.
- W3119138210 cites W2037477351 @default.
- W3119138210 cites W2043596210 @default.
- W3119138210 cites W2063246284 @default.
- W3119138210 cites W2092649222 @default.
- W3119138210 cites W2101629643 @default.
- W3119138210 cites W2106006415 @default.
- W3119138210 cites W2116308679 @default.
- W3119138210 cites W2122832496 @default.
- W3119138210 cites W2133512998 @default.
- W3119138210 cites W2151669316 @default.
- W3119138210 cites W2152119085 @default.
- W3119138210 cites W2154601099 @default.
- W3119138210 cites W2213712841 @default.
- W3119138210 cites W2346353886 @default.
- W3119138210 cites W2461423132 @default.
- W3119138210 cites W2508429489 @default.
- W3119138210 cites W2528974211 @default.
- W3119138210 cites W2561907433 @default.
- W3119138210 cites W2618530766 @default.
- W3119138210 cites W2737658251 @default.
- W3119138210 cites W2765396858 @default.
- W3119138210 cites W2765856398 @default.
- W3119138210 cites W2799903911 @default.
- W3119138210 cites W2807418021 @default.
- W3119138210 cites W2892832231 @default.
- W3119138210 cites W2919115771 @default.
- W3119138210 doi "https://doi.org/10.3390/electronics10020112" @default.
- W3119138210 hasPublicationYear "2021" @default.
- W3119138210 type Work @default.
- W3119138210 sameAs 3119138210 @default.
- W3119138210 citedByCount "8" @default.
- W3119138210 countsByYear W31191382102021 @default.
- W3119138210 countsByYear W31191382102022 @default.
- W3119138210 countsByYear W31191382102023 @default.
- W3119138210 crossrefType "journal-article" @default.
- W3119138210 hasAuthorship W3119138210A5004432231 @default.
- W3119138210 hasAuthorship W3119138210A5017278295 @default.
- W3119138210 hasAuthorship W3119138210A5033327049 @default.
- W3119138210 hasAuthorship W3119138210A5040723634 @default.
- W3119138210 hasAuthorship W3119138210A5048898267 @default.
- W3119138210 hasAuthorship W3119138210A5070458137 @default.
- W3119138210 hasAuthorship W3119138210A5079311625 @default.
- W3119138210 hasAuthorship W3119138210A5080476738 @default.
- W3119138210 hasAuthorship W3119138210A5090263430 @default.
- W3119138210 hasBestOaLocation W31191382101 @default.
- W3119138210 hasConcept C108583219 @default.
- W3119138210 hasConcept C113843644 @default.
- W3119138210 hasConcept C118552586 @default.
- W3119138210 hasConcept C119857082 @default.
- W3119138210 hasConcept C129307140 @default.
- W3119138210 hasConcept C138885662 @default.
- W3119138210 hasConcept C153180895 @default.
- W3119138210 hasConcept C154945302 @default.
- W3119138210 hasConcept C15744967 @default.
- W3119138210 hasConcept C157915830 @default.
- W3119138210 hasConcept C173201364 @default.
- W3119138210 hasConcept C173608175 @default.
- W3119138210 hasConcept C17744445 @default.
- W3119138210 hasConcept C199539241 @default.
- W3119138210 hasConcept C2776359362 @default.
- W3119138210 hasConcept C2776401178 @default.
- W3119138210 hasConcept C41008148 @default.
- W3119138210 hasConcept C41895202 @default.
- W3119138210 hasConcept C45347329 @default.
- W3119138210 hasConcept C46686674 @default.
- W3119138210 hasConcept C50644808 @default.
- W3119138210 hasConcept C522805319 @default.
- W3119138210 hasConcept C52622490 @default.
- W3119138210 hasConcept C54808283 @default.
- W3119138210 hasConcept C81363708 @default.
- W3119138210 hasConcept C94625758 @default.
- W3119138210 hasConceptScore W3119138210C108583219 @default.
- W3119138210 hasConceptScore W3119138210C113843644 @default.