Matches in SemOpenAlex for { <https://semopenalex.org/work/W3119150912> ?p ?o ?g. }
- W3119150912 endingPage "129611" @default.
- W3119150912 startingPage "129611" @default.
- W3119150912 abstract "Modelling photochemical pollutants, such as ground level ozone (O3), nitric oxide (NO) and nitrogen dioxide (NO2), in urban terrain was proven to be cardinal, chronophagous and complex. We built linear regression and random forest regression models using 4-years (2015–2018; hourly-averaged) observations for forecasting O3, NO and NO2 levels for two scenarios (1-month prediction (for January 2019) and 1-year prediction (for 2019)) — with and without the impact of meteorology. These flexible models have been developed for, both, localised (site-specific models) and combined (indicative of city-level) cases. Both models were aided with machine learning, to reduce their time-intensity compared to models built over high-performance computing. O3 prediction performance of linear regression model at the city level, under both cases of meteorological consideration, was found to be significantly poor. However, the site-specific model with meteorology performed satisfactorily (r = 0.87; RK Puram site). Further, during testing, linear regression models (site-specific and combined) for NO and NO2 with meteorology, show a slight improvement in their prediction accuracies when compared to the corresponding equivalent linear models without meteorology. Random forest regression with meteorology performed satisfactorily for indicative city-level NO (r = 0.90), NO2 (r = 0.89) and O3 (r = 0.85). In both regression techniques, increased uncertainty in modelling O3 is attributed to it being a secondary pollutant, non-linear dependency on NOx, VOCs, CO, radicals, and micro-climatic meteorological parameters. Analysis of importance among various precursors and meteorology have also been computed. The study holistically concludes that site-specific models with meteorology perform satisfactorily for both linear regression and random forest regression." @default.
- W3119150912 created "2021-01-18" @default.
- W3119150912 creator A5004907604 @default.
- W3119150912 creator A5012195906 @default.
- W3119150912 creator A5060145145 @default.
- W3119150912 creator A5089346942 @default.
- W3119150912 date "2021-06-01" @default.
- W3119150912 modified "2023-10-18" @default.
- W3119150912 title "Regression-based flexible models for photochemical air pollutants in the national capital territory of megacity Delhi" @default.
- W3119150912 cites W1764802427 @default.
- W3119150912 cites W1966674806 @default.
- W3119150912 cites W1981882960 @default.
- W3119150912 cites W1985479415 @default.
- W3119150912 cites W1986935332 @default.
- W3119150912 cites W1990023320 @default.
- W3119150912 cites W1991041654 @default.
- W3119150912 cites W1992984166 @default.
- W3119150912 cites W1996031526 @default.
- W3119150912 cites W2007293957 @default.
- W3119150912 cites W2009086942 @default.
- W3119150912 cites W2011395236 @default.
- W3119150912 cites W2019707595 @default.
- W3119150912 cites W2022668092 @default.
- W3119150912 cites W2023607510 @default.
- W3119150912 cites W2037559905 @default.
- W3119150912 cites W2044757858 @default.
- W3119150912 cites W2046881560 @default.
- W3119150912 cites W2052375898 @default.
- W3119150912 cites W2054773918 @default.
- W3119150912 cites W2062146696 @default.
- W3119150912 cites W2066236820 @default.
- W3119150912 cites W2070907687 @default.
- W3119150912 cites W2078643689 @default.
- W3119150912 cites W2087693653 @default.
- W3119150912 cites W2087972273 @default.
- W3119150912 cites W2095353638 @default.
- W3119150912 cites W2099646169 @default.
- W3119150912 cites W2107824224 @default.
- W3119150912 cites W2117213541 @default.
- W3119150912 cites W2117328010 @default.
- W3119150912 cites W2120024962 @default.
- W3119150912 cites W2128568839 @default.
- W3119150912 cites W2139477849 @default.
- W3119150912 cites W2140171609 @default.
- W3119150912 cites W2141923380 @default.
- W3119150912 cites W2141970008 @default.
- W3119150912 cites W2153546362 @default.
- W3119150912 cites W2155544089 @default.
- W3119150912 cites W2156137136 @default.
- W3119150912 cites W2159326981 @default.
- W3119150912 cites W2164567703 @default.
- W3119150912 cites W2170849738 @default.
- W3119150912 cites W2215421627 @default.
- W3119150912 cites W2260930460 @default.
- W3119150912 cites W2284939036 @default.
- W3119150912 cites W2300508861 @default.
- W3119150912 cites W2301692565 @default.
- W3119150912 cites W2302432179 @default.
- W3119150912 cites W2434774580 @default.
- W3119150912 cites W2471479883 @default.
- W3119150912 cites W2513820171 @default.
- W3119150912 cites W2517594782 @default.
- W3119150912 cites W2528452533 @default.
- W3119150912 cites W2560838277 @default.
- W3119150912 cites W2610094822 @default.
- W3119150912 cites W2614161836 @default.
- W3119150912 cites W2620300958 @default.
- W3119150912 cites W2688308158 @default.
- W3119150912 cites W2765562979 @default.
- W3119150912 cites W2767085346 @default.
- W3119150912 cites W2767101061 @default.
- W3119150912 cites W2779134180 @default.
- W3119150912 cites W2781898996 @default.
- W3119150912 cites W2790045902 @default.
- W3119150912 cites W2792659417 @default.
- W3119150912 cites W2865430977 @default.
- W3119150912 cites W2892167584 @default.
- W3119150912 cites W2909700878 @default.
- W3119150912 cites W2911964244 @default.
- W3119150912 cites W2978067824 @default.
- W3119150912 cites W2994880698 @default.
- W3119150912 cites W2995699880 @default.
- W3119150912 doi "https://doi.org/10.1016/j.chemosphere.2021.129611" @default.
- W3119150912 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33482521" @default.
- W3119150912 hasPublicationYear "2021" @default.
- W3119150912 type Work @default.
- W3119150912 sameAs 3119150912 @default.
- W3119150912 citedByCount "7" @default.
- W3119150912 countsByYear W31191509122021 @default.
- W3119150912 countsByYear W31191509122022 @default.
- W3119150912 countsByYear W31191509122023 @default.
- W3119150912 crossrefType "journal-article" @default.
- W3119150912 hasAuthorship W3119150912A5004907604 @default.
- W3119150912 hasAuthorship W3119150912A5012195906 @default.
- W3119150912 hasAuthorship W3119150912A5060145145 @default.
- W3119150912 hasAuthorship W3119150912A5089346942 @default.
- W3119150912 hasBestOaLocation W31191509122 @default.
- W3119150912 hasConcept C105795698 @default.