Matches in SemOpenAlex for { <https://semopenalex.org/work/W3119156737> ?p ?o ?g. }
- W3119156737 endingPage "353" @default.
- W3119156737 startingPage "353" @default.
- W3119156737 abstract "Multi-sensor imagery data has been used by researchers for the image semantic segmentation of buildings and outdoor scenes. Due to multi-sensor data hunger, researchers have implemented many simulation approaches to create synthetic datasets, and they have also synthesized thermal images because such thermal information can potentially improve segmentation accuracy. However, current approaches are mostly based on the laws of physics and are limited to geometric models’ level of detail (LOD), which describes the overall planning or modeling state. Another issue in current physics-based approaches is that thermal images cannot be aligned to RGB images because the configurations of a virtual camera used for rendering thermal images are difficult to synchronize with the configurations of a real camera used for capturing RGB images, which is important for segmentation. In this study, we propose an image translation approach to directly convert RGB images to simulated thermal images for expanding segmentation datasets. We aim to investigate the benefits of using an image translation approach for generating synthetic aerial thermal images and compare those approaches with physics-based approaches. Our datasets for generating thermal images are from a city center and a university campus in Karlsruhe, Germany. We found that using the generating model established by the city center to generate thermal images for campus datasets performed better than using the latter to generate thermal images for the former. We also found that using a generating model established by one building style to generate thermal images for datasets with the same building styles performed well. Therefore, we suggest using training datasets with richer and more diverse building architectural information, more complex envelope structures, and similar building styles to testing datasets for an image translation approach." @default.
- W3119156737 created "2021-01-18" @default.
- W3119156737 creator A5016995269 @default.
- W3119156737 creator A5028481845 @default.
- W3119156737 creator A5076723906 @default.
- W3119156737 date "2021-01-11" @default.
- W3119156737 modified "2023-09-27" @default.
- W3119156737 title "A Novel Building Temperature Simulation Approach Driven by Expanding Semantic Segmentation Training Datasets with Synthetic Aerial Thermal Images" @default.
- W3119156737 cites W1169662847 @default.
- W3119156737 cites W1572953823 @default.
- W3119156737 cites W1602160603 @default.
- W3119156737 cites W2011051638 @default.
- W3119156737 cites W2019949051 @default.
- W3119156737 cites W2022909534 @default.
- W3119156737 cites W2033552406 @default.
- W3119156737 cites W2045786899 @default.
- W3119156737 cites W2053173013 @default.
- W3119156737 cites W2066360774 @default.
- W3119156737 cites W2076178025 @default.
- W3119156737 cites W2079577896 @default.
- W3119156737 cites W2083716891 @default.
- W3119156737 cites W2085289201 @default.
- W3119156737 cites W2119240474 @default.
- W3119156737 cites W2126052502 @default.
- W3119156737 cites W2146081683 @default.
- W3119156737 cites W2157026765 @default.
- W3119156737 cites W2169659806 @default.
- W3119156737 cites W2275363859 @default.
- W3119156737 cites W2283252544 @default.
- W3119156737 cites W2308529009 @default.
- W3119156737 cites W2326925005 @default.
- W3119156737 cites W2331128040 @default.
- W3119156737 cites W2339754110 @default.
- W3119156737 cites W2340897893 @default.
- W3119156737 cites W2407072888 @default.
- W3119156737 cites W2412782625 @default.
- W3119156737 cites W2460657278 @default.
- W3119156737 cites W2461158874 @default.
- W3119156737 cites W2618530766 @default.
- W3119156737 cites W2619036887 @default.
- W3119156737 cites W2765838470 @default.
- W3119156737 cites W2791393553 @default.
- W3119156737 cites W2795382728 @default.
- W3119156737 cites W2798857366 @default.
- W3119156737 cites W2806070179 @default.
- W3119156737 cites W2806075291 @default.
- W3119156737 cites W2887522866 @default.
- W3119156737 cites W2909946038 @default.
- W3119156737 cites W2921251410 @default.
- W3119156737 cites W2922073063 @default.
- W3119156737 cites W2938696568 @default.
- W3119156737 cites W2947555468 @default.
- W3119156737 cites W2962690307 @default.
- W3119156737 cites W2962793481 @default.
- W3119156737 cites W2963073614 @default.
- W3119156737 cites W2974391216 @default.
- W3119156737 cites W2982691905 @default.
- W3119156737 cites W2991668011 @default.
- W3119156737 cites W2997233328 @default.
- W3119156737 cites W2999281281 @default.
- W3119156737 cites W3008295186 @default.
- W3119156737 cites W3036983237 @default.
- W3119156737 cites W3038049806 @default.
- W3119156737 cites W3046421354 @default.
- W3119156737 cites W3105282616 @default.
- W3119156737 cites W3170097736 @default.
- W3119156737 cites W4233886727 @default.
- W3119156737 cites W2901892761 @default.
- W3119156737 doi "https://doi.org/10.3390/en14020353" @default.
- W3119156737 hasPublicationYear "2021" @default.
- W3119156737 type Work @default.
- W3119156737 sameAs 3119156737 @default.
- W3119156737 citedByCount "5" @default.
- W3119156737 countsByYear W31191567372021 @default.
- W3119156737 countsByYear W31191567372022 @default.
- W3119156737 countsByYear W31191567372023 @default.
- W3119156737 crossrefType "journal-article" @default.
- W3119156737 hasAuthorship W3119156737A5016995269 @default.
- W3119156737 hasAuthorship W3119156737A5028481845 @default.
- W3119156737 hasAuthorship W3119156737A5076723906 @default.
- W3119156737 hasBestOaLocation W31191567371 @default.
- W3119156737 hasConcept C115961682 @default.
- W3119156737 hasConcept C124504099 @default.
- W3119156737 hasConcept C153294291 @default.
- W3119156737 hasConcept C154945302 @default.
- W3119156737 hasConcept C204530211 @default.
- W3119156737 hasConcept C205649164 @default.
- W3119156737 hasConcept C205711294 @default.
- W3119156737 hasConcept C2776429412 @default.
- W3119156737 hasConcept C31972630 @default.
- W3119156737 hasConcept C41008148 @default.
- W3119156737 hasConcept C82990744 @default.
- W3119156737 hasConcept C89600930 @default.
- W3119156737 hasConceptScore W3119156737C115961682 @default.
- W3119156737 hasConceptScore W3119156737C124504099 @default.
- W3119156737 hasConceptScore W3119156737C153294291 @default.
- W3119156737 hasConceptScore W3119156737C154945302 @default.
- W3119156737 hasConceptScore W3119156737C204530211 @default.