Matches in SemOpenAlex for { <https://semopenalex.org/work/W3119175057> ?p ?o ?g. }
- W3119175057 abstract "Abstract Background The coronavirus disease 2019 (COVID-19) pandemic has caused health concerns worldwide since December 2019. From the beginning of infection, patients will progress through different symptom stages, such as fever, dyspnea or even death. Identifying disease progression and predicting patient outcome at an early stage helps target treatment and resource allocation. However, there is no clear COVID-19 stage definition, and few studies have addressed characterizing COVID-19 progression, making the need for this study evident. Methods We proposed a temporal deep learning method, based on a time-aware long short-term memory (T-LSTM) neural network and used an online open dataset, including blood samples of 485 patients from Wuhan, China, to train the model. Our method can grasp the dynamic relations in irregularly sampled time series, which is ignored by existing works. Specifically, our method predicted the outcome of COVID-19 patients by considering both the biomarkers and the irregular time intervals. Then, we used the patient representations, extracted from T-LSTM units, to subtype the patient stages and describe the disease progression of COVID-19. Results Using our method, the accuracy of the outcome of prediction results was more than 90% at 12 days and 98, 95 and 93% at 3, 6, and 9 days, respectively. Most importantly, we found 4 stages of COVID-19 progression with different patient statuses and mortality risks. We ranked 40 biomarkers related to disease and gave the reference values of them for each stage. Top 5 is Lymph, LDH, hs-CRP, Indirect Bilirubin, Creatinine. Besides, we have found 3 complications - myocardial injury, liver function injury and renal function injury. Predicting which of the 4 stages the patient is currently in can help doctors better assess and cure the patient. Conclusions To combat the COVID-19 epidemic, this paper aims to help clinicians better assess and treat infected patients, provide relevant researchers with potential disease progression patterns, and enable more effective use of medical resources. Our method predicted patient outcomes with high accuracy and identified a four-stage disease progression. We hope that the obtained results and patterns will aid in fighting the disease." @default.
- W3119175057 created "2021-01-18" @default.
- W3119175057 creator A5028006464 @default.
- W3119175057 creator A5033367605 @default.
- W3119175057 creator A5042726689 @default.
- W3119175057 creator A5080648149 @default.
- W3119175057 creator A5086445887 @default.
- W3119175057 date "2021-02-08" @default.
- W3119175057 modified "2023-09-30" @default.
- W3119175057 title "Predicting COVID-19 disease progression and patient outcomes based on temporal deep learning" @default.
- W3119175057 cites W1555494686 @default.
- W3119175057 cites W2005807747 @default.
- W3119175057 cites W2016589492 @default.
- W3119175057 cites W2064675550 @default.
- W3119175057 cites W2492804124 @default.
- W3119175057 cites W2964068143 @default.
- W3119175057 cites W2985757832 @default.
- W3119175057 cites W3001118548 @default.
- W3119175057 cites W3002108456 @default.
- W3119175057 cites W3008090866 @default.
- W3119175057 cites W3010061930 @default.
- W3119175057 cites W3011149445 @default.
- W3119175057 cites W3016589287 @default.
- W3119175057 cites W3017011257 @default.
- W3119175057 cites W3025394897 @default.
- W3119175057 cites W3027992435 @default.
- W3119175057 cites W3028222879 @default.
- W3119175057 cites W3030109869 @default.
- W3119175057 cites W3030621456 @default.
- W3119175057 cites W3033588879 @default.
- W3119175057 cites W3035604179 @default.
- W3119175057 cites W3039828206 @default.
- W3119175057 cites W3040683741 @default.
- W3119175057 cites W3042100171 @default.
- W3119175057 cites W3048123412 @default.
- W3119175057 cites W3081923509 @default.
- W3119175057 cites W3089265909 @default.
- W3119175057 cites W3165656738 @default.
- W3119175057 doi "https://doi.org/10.1186/s12911-020-01359-9" @default.
- W3119175057 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7869774" @default.
- W3119175057 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33557818" @default.
- W3119175057 hasPublicationYear "2021" @default.
- W3119175057 type Work @default.
- W3119175057 sameAs 3119175057 @default.
- W3119175057 citedByCount "33" @default.
- W3119175057 countsByYear W31191750572020 @default.
- W3119175057 countsByYear W31191750572021 @default.
- W3119175057 countsByYear W31191750572022 @default.
- W3119175057 countsByYear W31191750572023 @default.
- W3119175057 crossrefType "journal-article" @default.
- W3119175057 hasAuthorship W3119175057A5028006464 @default.
- W3119175057 hasAuthorship W3119175057A5033367605 @default.
- W3119175057 hasAuthorship W3119175057A5042726689 @default.
- W3119175057 hasAuthorship W3119175057A5080648149 @default.
- W3119175057 hasAuthorship W3119175057A5086445887 @default.
- W3119175057 hasBestOaLocation W31191750571 @default.
- W3119175057 hasConcept C126322002 @default.
- W3119175057 hasConcept C144237770 @default.
- W3119175057 hasConcept C146357865 @default.
- W3119175057 hasConcept C148220186 @default.
- W3119175057 hasConcept C151730666 @default.
- W3119175057 hasConcept C154945302 @default.
- W3119175057 hasConcept C177713679 @default.
- W3119175057 hasConcept C2779134260 @default.
- W3119175057 hasConcept C3008058167 @default.
- W3119175057 hasConcept C33923547 @default.
- W3119175057 hasConcept C41008148 @default.
- W3119175057 hasConcept C524204448 @default.
- W3119175057 hasConcept C71924100 @default.
- W3119175057 hasConcept C86803240 @default.
- W3119175057 hasConcept C89623803 @default.
- W3119175057 hasConceptScore W3119175057C126322002 @default.
- W3119175057 hasConceptScore W3119175057C144237770 @default.
- W3119175057 hasConceptScore W3119175057C146357865 @default.
- W3119175057 hasConceptScore W3119175057C148220186 @default.
- W3119175057 hasConceptScore W3119175057C151730666 @default.
- W3119175057 hasConceptScore W3119175057C154945302 @default.
- W3119175057 hasConceptScore W3119175057C177713679 @default.
- W3119175057 hasConceptScore W3119175057C2779134260 @default.
- W3119175057 hasConceptScore W3119175057C3008058167 @default.
- W3119175057 hasConceptScore W3119175057C33923547 @default.
- W3119175057 hasConceptScore W3119175057C41008148 @default.
- W3119175057 hasConceptScore W3119175057C524204448 @default.
- W3119175057 hasConceptScore W3119175057C71924100 @default.
- W3119175057 hasConceptScore W3119175057C86803240 @default.
- W3119175057 hasConceptScore W3119175057C89623803 @default.
- W3119175057 hasIssue "1" @default.
- W3119175057 hasLocation W31191750571 @default.
- W3119175057 hasLocation W31191750572 @default.
- W3119175057 hasLocation W31191750573 @default.
- W3119175057 hasOpenAccess W3119175057 @default.
- W3119175057 hasPrimaryLocation W31191750571 @default.
- W3119175057 hasRelatedWork W3032320397 @default.
- W3119175057 hasRelatedWork W3103289217 @default.
- W3119175057 hasRelatedWork W3106370311 @default.
- W3119175057 hasRelatedWork W3108360120 @default.
- W3119175057 hasRelatedWork W3119540162 @default.
- W3119175057 hasRelatedWork W3152916563 @default.
- W3119175057 hasRelatedWork W4313474620 @default.
- W3119175057 hasRelatedWork W4327956415 @default.