Matches in SemOpenAlex for { <https://semopenalex.org/work/W3119196812> ?p ?o ?g. }
- W3119196812 endingPage "013103" @default.
- W3119196812 startingPage "013103" @default.
- W3119196812 abstract "Light-cone-like propagation of information is a universal phenomenon of nonequilibrium dynamics of integrable spin systems. In this paper, we investigate propagation of a local impact in the one-dimensional $XY$ model with the anisotropy $gamma$ in a magnetic field $h$ by calculating the magnetization profile. Applying a local and instantaneous unitary operation to the ground state, which we refer to as the local-impact protocol, we numerically observe various types of light-cone-like propagation in the parameter region $0leqgammaleq1$ and $0leq h leq2$ of the model. By combining numerical integration with an asymptotic analysis, we find the following: (i) for $|h|geq|1-gamma^{2}|$ except for the case on the line $h=1$ with $0<gamma<sqrt{3}/2$, a wave front propagates with the maximum group velocity of quasiparticles, except for the case $gamma=1$ and $0<h<1$, in which there is no clear wave front; (ii) for $|h|<|1-gamma^{2}|$ as well as on the line $h=1$ with $0<gamma<sqrt{3}/2$, a second wave front appears owing to multiple local extrema of the group velocity; (iii) for $|h|=|1-gamma^{2}|$, edges of the second wave front collapses at the origin, and as a result, the magnetization profile exhibits a ridge at the impacted site. Furthermore, we find by an asymptotic analysis that the height of the wave front decays in a power law in time $t$ with various exponents depending on the model parameters: the wave fronts exhibit a power-law decay $t^{-2/3}$ except for the line $h=1$, on which the decay can be given by either $sim t^{-3/5}$ or $sim t^{-1}$; the ridge at the impacted site for $|h|=|1-gamma^{2}|$ shows the decay $t^{-1/2}$ as opposed to the decay $t^{-1}$ in other cases." @default.
- W3119196812 created "2021-01-18" @default.
- W3119196812 creator A5087385724 @default.
- W3119196812 date "2021-01-08" @default.
- W3119196812 modified "2023-10-01" @default.
- W3119196812 title "Ballistic propagation of a local impact in the one-dimensional XY model" @default.
- W3119196812 cites W1575867504 @default.
- W3119196812 cites W1663839511 @default.
- W3119196812 cites W1692771265 @default.
- W3119196812 cites W1754311237 @default.
- W3119196812 cites W1925435271 @default.
- W3119196812 cites W1970087737 @default.
- W3119196812 cites W1970684941 @default.
- W3119196812 cites W1974623591 @default.
- W3119196812 cites W1974802228 @default.
- W3119196812 cites W1975451401 @default.
- W3119196812 cites W1977658351 @default.
- W3119196812 cites W1978774199 @default.
- W3119196812 cites W1979308046 @default.
- W3119196812 cites W1986168108 @default.
- W3119196812 cites W1989180436 @default.
- W3119196812 cites W1990634016 @default.
- W3119196812 cites W1991286570 @default.
- W3119196812 cites W1992529869 @default.
- W3119196812 cites W1994645482 @default.
- W3119196812 cites W1998664205 @default.
- W3119196812 cites W1999404512 @default.
- W3119196812 cites W2003464774 @default.
- W3119196812 cites W2011290825 @default.
- W3119196812 cites W2023473251 @default.
- W3119196812 cites W2026173936 @default.
- W3119196812 cites W2030383097 @default.
- W3119196812 cites W2033586226 @default.
- W3119196812 cites W2033959570 @default.
- W3119196812 cites W2035198333 @default.
- W3119196812 cites W2039585585 @default.
- W3119196812 cites W2040689906 @default.
- W3119196812 cites W2043561406 @default.
- W3119196812 cites W2051069677 @default.
- W3119196812 cites W2051552624 @default.
- W3119196812 cites W2051597527 @default.
- W3119196812 cites W2055253753 @default.
- W3119196812 cites W2063837118 @default.
- W3119196812 cites W2086612234 @default.
- W3119196812 cites W2093300793 @default.
- W3119196812 cites W2094810855 @default.
- W3119196812 cites W2104281360 @default.
- W3119196812 cites W2126511900 @default.
- W3119196812 cites W2137748572 @default.
- W3119196812 cites W2158997571 @default.
- W3119196812 cites W2162700145 @default.
- W3119196812 cites W2196684560 @default.
- W3119196812 cites W2229757484 @default.
- W3119196812 cites W2285292793 @default.
- W3119196812 cites W2300238109 @default.
- W3119196812 cites W2323979901 @default.
- W3119196812 cites W2337550515 @default.
- W3119196812 cites W2460615089 @default.
- W3119196812 cites W2486166576 @default.
- W3119196812 cites W2519694173 @default.
- W3119196812 cites W2593023959 @default.
- W3119196812 cites W2614188772 @default.
- W3119196812 cites W2619070458 @default.
- W3119196812 cites W2620732689 @default.
- W3119196812 cites W2627081240 @default.
- W3119196812 cites W2738004479 @default.
- W3119196812 cites W2791562030 @default.
- W3119196812 cites W2792736187 @default.
- W3119196812 cites W2811380518 @default.
- W3119196812 cites W2911271453 @default.
- W3119196812 cites W3013578219 @default.
- W3119196812 cites W3037704082 @default.
- W3119196812 cites W3098086659 @default.
- W3119196812 cites W3098396319 @default.
- W3119196812 cites W3099272592 @default.
- W3119196812 cites W3100815598 @default.
- W3119196812 cites W3101916665 @default.
- W3119196812 cites W3103420492 @default.
- W3119196812 cites W3103562062 @default.
- W3119196812 cites W3104428404 @default.
- W3119196812 cites W3104687661 @default.
- W3119196812 cites W3105956561 @default.
- W3119196812 cites W3106011202 @default.
- W3119196812 cites W3122216664 @default.
- W3119196812 cites W3124451507 @default.
- W3119196812 cites W4253194408 @default.
- W3119196812 cites W4303083268 @default.
- W3119196812 doi "https://doi.org/10.1088/1742-5468/abcd37" @default.
- W3119196812 hasPublicationYear "2021" @default.
- W3119196812 type Work @default.
- W3119196812 sameAs 3119196812 @default.
- W3119196812 citedByCount "1" @default.
- W3119196812 countsByYear W31191968122021 @default.
- W3119196812 crossrefType "journal-article" @default.
- W3119196812 hasAuthorship W3119196812A5087385724 @default.
- W3119196812 hasBestOaLocation W31191968121 @default.
- W3119196812 hasConcept C115260700 @default.
- W3119196812 hasConcept C121332964 @default.