Matches in SemOpenAlex for { <https://semopenalex.org/work/W3119255562> ?p ?o ?g. }
- W3119255562 endingPage "70" @default.
- W3119255562 startingPage "58" @default.
- W3119255562 abstract "With the rapid development of financial market, a growing number of stocks become available on the financial market. How to efficiently select these stocks to achieve higher return and lower risk has become a hot research topic in financial management. This is usually called the portfolio optimization problem (POP). When the cardinality constrained (CC) is added to limit the number of selected stocks to a certain value, the resulting CCPOP is more challenging with the following two difficulties: i) Due to the complexity of CC in finical market, how to efficiently deal with CC in POP to obtain feasible solution is difficult and time-consuming. ii) The objectives of portfolio return and risk always conflict with each other and their relation is difficult to balance. To better deal with above difficulties, this paper focuses on the multi-objective CCPOP (MoCCPOP) and proposes a multiple populations co-evolutionary particle swarm optimization (MPCoPSO) algorithm, which is based on multiple populations for multiple objectives (MPMO) framework and has the following four advantages. Firstly, a hybrid binary and real (HBR) encoding strategy is introduced to better represent the stock selection and the asset weight of the solutions in MoCCPOP. Secondly, a return risk ratio heuristic (R3H) strategy based on the historical return and risk of each stock is proposed as a fast CC handling method to obtain feasible solutions. Thirdly, a new particle update method based on bi-directional local search (BLS) strategy is designed to increase the chance to improve the solution accuracy and to approach the global Pareto front (PF). Last but not least, a hybrid elite competition (HEC) strategy is proposed to assist the archive update, which provides more promising solutions and brings diversity to avoid local PF. The first two strategies help to efficiently deal with the CC challenge, while the last two strategies are efficient in solving the multi-objective challenge. By comparing with some recent well-performing and state-of-the-art multi-objective optimization algorithms, MPCoPSO shows the superior performance in solving the MoCCPOP." @default.
- W3119255562 created "2021-01-18" @default.
- W3119255562 creator A5008386708 @default.
- W3119255562 creator A5011145004 @default.
- W3119255562 creator A5020295500 @default.
- W3119255562 creator A5051439492 @default.
- W3119255562 creator A5081905302 @default.
- W3119255562 date "2021-03-01" @default.
- W3119255562 modified "2023-10-16" @default.
- W3119255562 title "Multiple populations co-evolutionary particle swarm optimization for multi-objective cardinality constrained portfolio optimization problem" @default.
- W3119255562 cites W1967723270 @default.
- W3119255562 cites W1992913497 @default.
- W3119255562 cites W2002203871 @default.
- W3119255562 cites W2009880058 @default.
- W3119255562 cites W2019426825 @default.
- W3119255562 cites W2040533142 @default.
- W3119255562 cites W2040956360 @default.
- W3119255562 cites W2041781650 @default.
- W3119255562 cites W2042365219 @default.
- W3119255562 cites W2049386744 @default.
- W3119255562 cites W2055142708 @default.
- W3119255562 cites W2068360796 @default.
- W3119255562 cites W2069084725 @default.
- W3119255562 cites W2069651500 @default.
- W3119255562 cites W2087661330 @default.
- W3119255562 cites W2096166399 @default.
- W3119255562 cites W2103244737 @default.
- W3119255562 cites W2106334424 @default.
- W3119255562 cites W2107993500 @default.
- W3119255562 cites W2112610675 @default.
- W3119255562 cites W2118692559 @default.
- W3119255562 cites W2120600560 @default.
- W3119255562 cites W2120911092 @default.
- W3119255562 cites W2123066915 @default.
- W3119255562 cites W2126105956 @default.
- W3119255562 cites W2127474646 @default.
- W3119255562 cites W2135863358 @default.
- W3119255562 cites W2143245714 @default.
- W3119255562 cites W2143381319 @default.
- W3119255562 cites W2151237529 @default.
- W3119255562 cites W2156262512 @default.
- W3119255562 cites W2157745054 @default.
- W3119255562 cites W2162397932 @default.
- W3119255562 cites W2171294697 @default.
- W3119255562 cites W2271389764 @default.
- W3119255562 cites W2310225923 @default.
- W3119255562 cites W2319520740 @default.
- W3119255562 cites W2323521202 @default.
- W3119255562 cites W2498209554 @default.
- W3119255562 cites W2534581050 @default.
- W3119255562 cites W2556781984 @default.
- W3119255562 cites W2605227471 @default.
- W3119255562 cites W2626389465 @default.
- W3119255562 cites W2803970949 @default.
- W3119255562 cites W2808794355 @default.
- W3119255562 cites W2829536470 @default.
- W3119255562 cites W2889491415 @default.
- W3119255562 cites W2891516347 @default.
- W3119255562 cites W2894290879 @default.
- W3119255562 cites W2895851783 @default.
- W3119255562 cites W2896711858 @default.
- W3119255562 cites W2909854249 @default.
- W3119255562 cites W2994099454 @default.
- W3119255562 cites W2997457453 @default.
- W3119255562 cites W3015954380 @default.
- W3119255562 cites W3034533053 @default.
- W3119255562 cites W3036925570 @default.
- W3119255562 doi "https://doi.org/10.1016/j.neucom.2020.12.022" @default.
- W3119255562 hasPublicationYear "2021" @default.
- W3119255562 type Work @default.
- W3119255562 sameAs 3119255562 @default.
- W3119255562 citedByCount "34" @default.
- W3119255562 countsByYear W31192555622021 @default.
- W3119255562 countsByYear W31192555622022 @default.
- W3119255562 countsByYear W31192555622023 @default.
- W3119255562 crossrefType "journal-article" @default.
- W3119255562 hasAuthorship W3119255562A5008386708 @default.
- W3119255562 hasAuthorship W3119255562A5011145004 @default.
- W3119255562 hasAuthorship W3119255562A5020295500 @default.
- W3119255562 hasAuthorship W3119255562A5051439492 @default.
- W3119255562 hasAuthorship W3119255562A5081905302 @default.
- W3119255562 hasConcept C10138342 @default.
- W3119255562 hasConcept C124101348 @default.
- W3119255562 hasConcept C126255220 @default.
- W3119255562 hasConcept C137836250 @default.
- W3119255562 hasConcept C151730666 @default.
- W3119255562 hasConcept C159149176 @default.
- W3119255562 hasConcept C162324750 @default.
- W3119255562 hasConcept C202655437 @default.
- W3119255562 hasConcept C2780299701 @default.
- W3119255562 hasConcept C2780762169 @default.
- W3119255562 hasConcept C2780821815 @default.
- W3119255562 hasConcept C33923547 @default.
- W3119255562 hasConcept C41008148 @default.
- W3119255562 hasConcept C68781425 @default.
- W3119255562 hasConcept C85617194 @default.
- W3119255562 hasConcept C86803240 @default.
- W3119255562 hasConcept C87117476 @default.