Matches in SemOpenAlex for { <https://semopenalex.org/work/W3119257952> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W3119257952 endingPage "105923" @default.
- W3119257952 startingPage "105923" @default.
- W3119257952 abstract "The proliferation of toxin-producing phytoplankton species can compromise the quality of the water sources. This contamination is difficult to detect, and consequently to be neutralised, since normal water purification techniques are ineffective. Currently, the water analyses about phytoplankton are commonly performed by the specialists with manual routine analyses, which represents a major limitation. The adequate identification and classification of phytoplankton specimens requires intensive training and expertise. Additionally, the performed analysis involves a lengthy process that exhibits serious problems of reliability and repeatability as inter-expert agreement is not always reached. Considering all those factors, the automatization of these analyses is, therefore, highly desirable to reduce the workload of the specialists and facilitate the process. This manuscript proposes a novel fully automatic methodology to perform phytoplankton analyses in digital microscopy images of water samples taken with a regular light microscope. In particular, we propose a method capable of analysing multi-specimen images acquired using a simplified systematic protocol. In contrast with prior approaches, this enables its use without the necessity of an expert taxonomist operating the microscope. The system is able to detect and segment the different existing phytoplankton specimens, with high variability in terms of visual appearances, and to merge them into colonies and sparse specimens when necessary. Moreover, the system is capable of differentiating them from other similar objects like zooplankton, detritus or mineral particles, among others, and then classify the specimens into defined target species of interest using a machine learning-based approach. The proposed system provided satisfactory and accurate results in every step. The detection step provided a FNR of 0.4%. Phytoplankton detection, that is, differentiating true phytoplankton from similar objects (zooplankton, minerals, etc.), provided a result of 84.07% of precision at 90% of recall. The target species classification, reported an overall accuracy of 87.50%. The recall levels for each species are, 81.82% for W. naegeliana, 57.15% for A. spiroides, 85.71% for D. sociale and 95% for the ”Other” group, a set of relevant toxic and interesting species widely spread over the samples. The proposed methodology provided accurate results in all the designed steps given the complexity of the problem, particularly in terms of specimen identification, phytoplankton differentiation as well as the classification of the defined target species. Therefore, this fully automatic system represents a robust and consistent tool to aid the specialists in the analysis of the quality of the water sources and potability." @default.
- W3119257952 created "2021-01-18" @default.
- W3119257952 creator A5012096609 @default.
- W3119257952 creator A5045514493 @default.
- W3119257952 creator A5057860861 @default.
- W3119257952 creator A5087575858 @default.
- W3119257952 creator A5090041601 @default.
- W3119257952 date "2021-03-01" @default.
- W3119257952 modified "2023-10-16" @default.
- W3119257952 title "Fully automatic detection and classification of phytoplankton specimens in digital microscopy images" @default.
- W3119257952 cites W1499486838 @default.
- W3119257952 cites W1966036357 @default.
- W3119257952 cites W1974859193 @default.
- W3119257952 cites W1982964233 @default.
- W3119257952 cites W1986667786 @default.
- W3119257952 cites W1989016021 @default.
- W3119257952 cites W1995521317 @default.
- W3119257952 cites W1999334096 @default.
- W3119257952 cites W2000446935 @default.
- W3119257952 cites W2003099669 @default.
- W3119257952 cites W2005912592 @default.
- W3119257952 cites W2006355515 @default.
- W3119257952 cites W2040367372 @default.
- W3119257952 cites W2046846859 @default.
- W3119257952 cites W2065429801 @default.
- W3119257952 cites W2079099232 @default.
- W3119257952 cites W2089072974 @default.
- W3119257952 cites W2098154413 @default.
- W3119257952 cites W2125273662 @default.
- W3119257952 cites W2128830002 @default.
- W3119257952 cites W2138631674 @default.
- W3119257952 cites W2144771874 @default.
- W3119257952 cites W2148222126 @default.
- W3119257952 cites W2473458858 @default.
- W3119257952 cites W2614480188 @default.
- W3119257952 cites W2748937207 @default.
- W3119257952 cites W2899998868 @default.
- W3119257952 cites W2982088505 @default.
- W3119257952 cites W3016769295 @default.
- W3119257952 doi "https://doi.org/10.1016/j.cmpb.2020.105923" @default.
- W3119257952 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33486341" @default.
- W3119257952 hasPublicationYear "2021" @default.
- W3119257952 type Work @default.
- W3119257952 sameAs 3119257952 @default.
- W3119257952 citedByCount "7" @default.
- W3119257952 countsByYear W31192579522021 @default.
- W3119257952 countsByYear W31192579522022 @default.
- W3119257952 countsByYear W31192579522023 @default.
- W3119257952 crossrefType "journal-article" @default.
- W3119257952 hasAuthorship W3119257952A5012096609 @default.
- W3119257952 hasAuthorship W3119257952A5045514493 @default.
- W3119257952 hasAuthorship W3119257952A5057860861 @default.
- W3119257952 hasAuthorship W3119257952A5087575858 @default.
- W3119257952 hasAuthorship W3119257952A5090041601 @default.
- W3119257952 hasConcept C115961682 @default.
- W3119257952 hasConcept C142796444 @default.
- W3119257952 hasConcept C153180895 @default.
- W3119257952 hasConcept C154945302 @default.
- W3119257952 hasConcept C18903297 @default.
- W3119257952 hasConcept C2780892065 @default.
- W3119257952 hasConcept C31972630 @default.
- W3119257952 hasConcept C41008148 @default.
- W3119257952 hasConcept C42781572 @default.
- W3119257952 hasConcept C86803240 @default.
- W3119257952 hasConcept C9417928 @default.
- W3119257952 hasConceptScore W3119257952C115961682 @default.
- W3119257952 hasConceptScore W3119257952C142796444 @default.
- W3119257952 hasConceptScore W3119257952C153180895 @default.
- W3119257952 hasConceptScore W3119257952C154945302 @default.
- W3119257952 hasConceptScore W3119257952C18903297 @default.
- W3119257952 hasConceptScore W3119257952C2780892065 @default.
- W3119257952 hasConceptScore W3119257952C31972630 @default.
- W3119257952 hasConceptScore W3119257952C41008148 @default.
- W3119257952 hasConceptScore W3119257952C42781572 @default.
- W3119257952 hasConceptScore W3119257952C86803240 @default.
- W3119257952 hasConceptScore W3119257952C9417928 @default.
- W3119257952 hasFunder F4320326655 @default.
- W3119257952 hasFunder F4320335322 @default.
- W3119257952 hasLocation W31192579521 @default.
- W3119257952 hasOpenAccess W3119257952 @default.
- W3119257952 hasPrimaryLocation W31192579521 @default.
- W3119257952 hasRelatedWork W2080625741 @default.
- W3119257952 hasRelatedWork W2183514925 @default.
- W3119257952 hasRelatedWork W2348439329 @default.
- W3119257952 hasRelatedWork W2356087891 @default.
- W3119257952 hasRelatedWork W2373336158 @default.
- W3119257952 hasRelatedWork W2380813538 @default.
- W3119257952 hasRelatedWork W2951194758 @default.
- W3119257952 hasRelatedWork W3036827782 @default.
- W3119257952 hasRelatedWork W4377241632 @default.
- W3119257952 hasRelatedWork W2553152692 @default.
- W3119257952 hasVolume "200" @default.
- W3119257952 isParatext "false" @default.
- W3119257952 isRetracted "false" @default.
- W3119257952 magId "3119257952" @default.
- W3119257952 workType "article" @default.