Matches in SemOpenAlex for { <https://semopenalex.org/work/W3119264937> ?p ?o ?g. }
Showing items 1 to 56 of
56
with 100 items per page.
- W3119264937 abstract "Background: Pathological analysis plays an important role in the diagnosis, prediction and planning of cancer treatment. Using digital pathology, ie, scanning and storing digital parts of patient tissue, tools for analyzing these complex images now can be developed. Doctors use a computer diagnostic system from an intelligent assistant to accurately diagnose. These systems have great benefits in improving treatment efficacy. Methods: In this study, the deep neural network classifier has been used with the help of the Tensor Flow framework and the use of the Keras-library. Input images are initially transmitted from a low pass filter to reduce noise effects. The pre-processed images are then imported into a convolutional neural network. Results: The results of the research reveal a significant difference in the accuracy values between different methods with the proposed method, which in some cases indicates an increase of more than 14.18% in the accuracy of the diagnosis. Another advantage of the proposed method is to provide high sensitivity to histopathologic images, which shows an increase of 12 to 18 percent compared to other studies. The reason for this is the excellence of extracting high-level features through convolutional neural network, which is accompanied by a reduction in the size of the feature vector. Conclusion: The results showed a accuracy of %98.6 for skin lesions and %96.1 accuracy for breast cancer histopathologic findings, which offers promising results compared to the results of other studies." @default.
- W3119264937 created "2021-01-18" @default.
- W3119264937 creator A5014148327 @default.
- W3119264937 creator A5020538781 @default.
- W3119264937 creator A5074769543 @default.
- W3119264937 date "2020-12-30" @default.
- W3119264937 modified "2023-09-23" @default.
- W3119264937 title "Segmentation of cancer cell in histopathologic images of breast cancer and lesion area in skin cancer images using convolutional neural networks" @default.
- W3119264937 doi "https://doi.org/10.34172/mj.2020.075" @default.
- W3119264937 hasPublicationYear "2020" @default.
- W3119264937 type Work @default.
- W3119264937 sameAs 3119264937 @default.
- W3119264937 citedByCount "0" @default.
- W3119264937 crossrefType "journal-article" @default.
- W3119264937 hasAuthorship W3119264937A5014148327 @default.
- W3119264937 hasAuthorship W3119264937A5020538781 @default.
- W3119264937 hasAuthorship W3119264937A5074769543 @default.
- W3119264937 hasConcept C121608353 @default.
- W3119264937 hasConcept C126322002 @default.
- W3119264937 hasConcept C153180895 @default.
- W3119264937 hasConcept C154945302 @default.
- W3119264937 hasConcept C41008148 @default.
- W3119264937 hasConcept C50644808 @default.
- W3119264937 hasConcept C530470458 @default.
- W3119264937 hasConcept C71924100 @default.
- W3119264937 hasConcept C81363708 @default.
- W3119264937 hasConcept C89600930 @default.
- W3119264937 hasConcept C95623464 @default.
- W3119264937 hasConceptScore W3119264937C121608353 @default.
- W3119264937 hasConceptScore W3119264937C126322002 @default.
- W3119264937 hasConceptScore W3119264937C153180895 @default.
- W3119264937 hasConceptScore W3119264937C154945302 @default.
- W3119264937 hasConceptScore W3119264937C41008148 @default.
- W3119264937 hasConceptScore W3119264937C50644808 @default.
- W3119264937 hasConceptScore W3119264937C530470458 @default.
- W3119264937 hasConceptScore W3119264937C71924100 @default.
- W3119264937 hasConceptScore W3119264937C81363708 @default.
- W3119264937 hasConceptScore W3119264937C89600930 @default.
- W3119264937 hasConceptScore W3119264937C95623464 @default.
- W3119264937 hasLocation W31192649371 @default.
- W3119264937 hasOpenAccess W3119264937 @default.
- W3119264937 hasPrimaryLocation W31192649371 @default.
- W3119264937 hasRelatedWork W1679810 @default.
- W3119264937 hasRelatedWork W2582698 @default.
- W3119264937 hasRelatedWork W274842 @default.
- W3119264937 hasRelatedWork W3540334 @default.
- W3119264937 hasRelatedWork W4771408 @default.
- W3119264937 hasRelatedWork W654939 @default.
- W3119264937 hasRelatedWork W6680660 @default.
- W3119264937 hasRelatedWork W7626849 @default.
- W3119264937 hasRelatedWork W8695 @default.
- W3119264937 hasRelatedWork W2925925 @default.
- W3119264937 isParatext "false" @default.
- W3119264937 isRetracted "false" @default.
- W3119264937 magId "3119264937" @default.
- W3119264937 workType "article" @default.