Matches in SemOpenAlex for { <https://semopenalex.org/work/W3119266255> ?p ?o ?g. }
- W3119266255 abstract "Abstract Flow fields near the turbine vane endwall region are very complicated due to the presence of highly three-dimensional passage vortices and endwall secondary flows. This makes it challenging for the endwall to be effectively cooled by employing traditional endwall cooling methods, such as impingement cooling combined with local film cooling inside the vane passage. One effective endwall cooling scheme: coolant injection flow through discrete holes upstream of the vane leading edge on the endwall, has been considered by many gas turbine companies. The present paper focuses on endwall film cooling effectiveness evaluation with upstream coolant injection through discrete holes. Detailed experimental and numerical studies on endwall heat transfer and cooling performance with coolant injection flow through upstream discrete holes is presented in this paper. High resolution heat transfer coefficient (HTC) and adiabatic film cooling effectiveness values were measured using a transient infrared thermography technique on an axisymmetric contoured endwall. The endwall tested was a scaled up inner endwall of an industrial transonic turbine vane with double-row discrete cylindrical film cooling holes located 0.39Cx upstream of the vane leading edge. The tests were performed in a transonic linear cascade blow-down wind tunnel facility. Conditions were representative of a land-based power generation turbine with exit Mach number of 0.85 corresponding to exit Reynolds number of 1.5 × 106, based on exit condition and axial chord length. A high turbulence level of 16% with an integral length scale of 3.6%P was generated using inlet turbulence grid to reproduce the typical turbulence conditions in real turbine. Low temperature air was used to simulate the typical coolant-to-mainstream condition by controlling two parameters of the upstream coolant injection flow: mass flow rate to determine the coolant-to-mainstream blowing ratio (BR = 2.5, 3.5), and gas temperature to determine the density ratio (DR = 1.2). To highlight the interactions between the upstream coolant flow and the passage secondary flow combined with the influence on the endwall heat transfer and cooling performance, a comparison of CFD predictions to experimental results was performed by solving steady-state Reynolds-Averaged Navier-Stokes (RANS) using the commercial CFD solver ANSYS Fluent v.15. A detailed numerical method validation was performed for four different Reynolds-averaged turbulence models. The Realizable κ-ϵ model was validated to be suitable to obtain reliable numerical solution. The influences of a wide range of coolant-to-mainstream blowing ratios (BR = 1.0, 1.5, 1.9, 2.5, 3.0, 3.5) were numerically studied. Complex interactions between coolant injections and secondary flows in vane passage were presented and discussed. Results indicate that for lower values of BR, the endwall coolant coverage from the upstream double-row discrete holes is strongly controlled by the passage secondary flow, thus the cooling effectiveness is very poor. As the BR increases, the strong secondary flow in vane passage can be suppressed by the coolant injections and begin to be almost eliminated when BR increases to a critical value (BR = 2.5 – 3.0). Beyond the critical BR, most of the injected coolant begins to lift off from the endwall and penetrate significantly into the mainstream flow, yielding inefficient endwall cooling performance." @default.
- W3119266255 created "2021-01-18" @default.
- W3119266255 creator A5020168001 @default.
- W3119266255 creator A5021461190 @default.
- W3119266255 creator A5029115319 @default.
- W3119266255 creator A5043431594 @default.
- W3119266255 creator A5049037915 @default.
- W3119266255 creator A5060373227 @default.
- W3119266255 creator A5087805668 @default.
- W3119266255 date "2020-09-21" @default.
- W3119266255 modified "2023-10-16" @default.
- W3119266255 title "Endwall Heat Transfer and Cooling Performance of a Transonic Turbine Vane With Upstream Injection Flow" @default.
- W3119266255 cites W1566596571 @default.
- W3119266255 cites W1963557154 @default.
- W3119266255 cites W1968460525 @default.
- W3119266255 cites W1981947686 @default.
- W3119266255 cites W1982628962 @default.
- W3119266255 cites W1982746378 @default.
- W3119266255 cites W1982785659 @default.
- W3119266255 cites W1987492474 @default.
- W3119266255 cites W1988799098 @default.
- W3119266255 cites W1990456272 @default.
- W3119266255 cites W1993646404 @default.
- W3119266255 cites W2003695674 @default.
- W3119266255 cites W2013655149 @default.
- W3119266255 cites W2044210755 @default.
- W3119266255 cites W2044741133 @default.
- W3119266255 cites W2049157968 @default.
- W3119266255 cites W2066729984 @default.
- W3119266255 cites W2068234122 @default.
- W3119266255 cites W2076170063 @default.
- W3119266255 cites W2078653261 @default.
- W3119266255 cites W2083840085 @default.
- W3119266255 cites W2093374973 @default.
- W3119266255 cites W2115040905 @default.
- W3119266255 cites W2116278711 @default.
- W3119266255 cites W2121190637 @default.
- W3119266255 cites W2131953791 @default.
- W3119266255 cites W2134603224 @default.
- W3119266255 cites W2141184137 @default.
- W3119266255 cites W2143126912 @default.
- W3119266255 cites W2146173007 @default.
- W3119266255 cites W2327325041 @default.
- W3119266255 cites W2484279470 @default.
- W3119266255 cites W2765103905 @default.
- W3119266255 cites W2801268243 @default.
- W3119266255 cites W2801622004 @default.
- W3119266255 cites W2896802649 @default.
- W3119266255 cites W2982918927 @default.
- W3119266255 doi "https://doi.org/10.1115/gt2020-16160" @default.
- W3119266255 hasPublicationYear "2020" @default.
- W3119266255 type Work @default.
- W3119266255 sameAs 3119266255 @default.
- W3119266255 citedByCount "0" @default.
- W3119266255 crossrefType "proceedings-article" @default.
- W3119266255 hasAuthorship W3119266255A5020168001 @default.
- W3119266255 hasAuthorship W3119266255A5021461190 @default.
- W3119266255 hasAuthorship W3119266255A5029115319 @default.
- W3119266255 hasAuthorship W3119266255A5043431594 @default.
- W3119266255 hasAuthorship W3119266255A5049037915 @default.
- W3119266255 hasAuthorship W3119266255A5060373227 @default.
- W3119266255 hasAuthorship W3119266255A5087805668 @default.
- W3119266255 hasConcept C103838597 @default.
- W3119266255 hasConcept C121332964 @default.
- W3119266255 hasConcept C127413603 @default.
- W3119266255 hasConcept C13393347 @default.
- W3119266255 hasConcept C146978453 @default.
- W3119266255 hasConcept C165231844 @default.
- W3119266255 hasConcept C192562407 @default.
- W3119266255 hasConcept C196558001 @default.
- W3119266255 hasConcept C20381859 @default.
- W3119266255 hasConcept C2778384633 @default.
- W3119266255 hasConcept C2778449969 @default.
- W3119266255 hasConcept C2779570065 @default.
- W3119266255 hasConcept C46634527 @default.
- W3119266255 hasConcept C50517652 @default.
- W3119266255 hasConcept C57879066 @default.
- W3119266255 hasConcept C91914117 @default.
- W3119266255 hasConcept C97355855 @default.
- W3119266255 hasConceptScore W3119266255C103838597 @default.
- W3119266255 hasConceptScore W3119266255C121332964 @default.
- W3119266255 hasConceptScore W3119266255C127413603 @default.
- W3119266255 hasConceptScore W3119266255C13393347 @default.
- W3119266255 hasConceptScore W3119266255C146978453 @default.
- W3119266255 hasConceptScore W3119266255C165231844 @default.
- W3119266255 hasConceptScore W3119266255C192562407 @default.
- W3119266255 hasConceptScore W3119266255C196558001 @default.
- W3119266255 hasConceptScore W3119266255C20381859 @default.
- W3119266255 hasConceptScore W3119266255C2778384633 @default.
- W3119266255 hasConceptScore W3119266255C2778449969 @default.
- W3119266255 hasConceptScore W3119266255C2779570065 @default.
- W3119266255 hasConceptScore W3119266255C46634527 @default.
- W3119266255 hasConceptScore W3119266255C50517652 @default.
- W3119266255 hasConceptScore W3119266255C57879066 @default.
- W3119266255 hasConceptScore W3119266255C91914117 @default.
- W3119266255 hasConceptScore W3119266255C97355855 @default.
- W3119266255 hasLocation W31192662551 @default.
- W3119266255 hasOpenAccess W3119266255 @default.
- W3119266255 hasPrimaryLocation W31192662551 @default.
- W3119266255 hasRelatedWork W18408112 @default.