Matches in SemOpenAlex for { <https://semopenalex.org/work/W3119294675> ?p ?o ?g. }
Showing items 1 to 63 of
63
with 100 items per page.
- W3119294675 abstract "Financial markets are an important feature of modern economies, where trading decisions can be critical because of their significant impact on social and economic life. Various models and techniques have been applied to describe and predict financial time series in order to develop effective tools in financial prediction. In particular, neural networks have recently gained significant research interest in financial markets as well as in other domains. As financial time series data show a high degree of non-linearity, neural networks represent an attractive approach in this area. This thesis introduces a novel neural network model, the FL-SMIA model, as well as several variations and extensions, namely the FL-SMIA*, D-FL-SMIA, MD-FLSMIA, MD-FL-SMIA-2, M FL-SMIA, and FL-SMIA-RBM. The FL-SMIA model is a model that uses the principles of the Functional Link Neural Network (FLNN) and the Self-organising Multilayer Neural Network using the Immune Algorithm (SMIA). The FL-SMIA model combines the higher-order inputs , i.e. the products of raw input features, with the self-organising hidden layer (SMIA) that dynamically grows and adapts to the input vectors. Based on the promising results of the FL-SMIA network in initial experiments, variations and extensions have been developed using deeper architectures (D FLSMIA), mixed input representations (M-FL-SMIA), a combination of deep and mixed architectures (MD-FL-SMIA), and of the FL-SMIA with the Restricted Boltzmann Machine in the FL-SMIA-RBM. The proposed models have also been compared with other neural network architectures: FLNN, the Multilayer perceptron (MLP), and SMIA. All networks have been evaluated for one day and five days ahead prediction using financial and statistical metrics, focusing on the Relative Profit (RP) and Annualised Volatility (AV). Data-sets of three different types have been used: exchange rates (USD/UKP, USD/EUR, JPY/USD), stock price indices (NASDAQ, DJIA), and commodity prices (OIL and GOLD). In terms of average RP results for the one day ahead prediction, the FL-SMIA was slightly worse than the best model (FLNN) but FL-SMIA model reduced the investment risk by producing the lowest average AV value. We have also observed notable differences between data types. For the five days ahead prediction, the M-FL-SMIA model has the highest average RP and the lowest average AV results. Correlation analysis on the residuals has shown differences in behaviour between FLNN model and FL-SMIA model, encouraging further extensions and variations.Overall, the FL-SMIA model and its extensions will be useful for time series prediction because of their competitive performance and different behaviour to standard neural networks." @default.
- W3119294675 created "2021-01-18" @default.
- W3119294675 creator A5000384282 @default.
- W3119294675 date "2020-01-01" @default.
- W3119294675 modified "2023-09-26" @default.
- W3119294675 title "Novel neural network models for financial prediction" @default.
- W3119294675 hasPublicationYear "2020" @default.
- W3119294675 type Work @default.
- W3119294675 sameAs 3119294675 @default.
- W3119294675 citedByCount "0" @default.
- W3119294675 crossrefType "dissertation" @default.
- W3119294675 hasAuthorship W3119294675A5000384282 @default.
- W3119294675 hasConcept C10138342 @default.
- W3119294675 hasConcept C119857082 @default.
- W3119294675 hasConcept C138885662 @default.
- W3119294675 hasConcept C154945302 @default.
- W3119294675 hasConcept C162324750 @default.
- W3119294675 hasConcept C19244329 @default.
- W3119294675 hasConcept C192576344 @default.
- W3119294675 hasConcept C199354608 @default.
- W3119294675 hasConcept C2776401178 @default.
- W3119294675 hasConcept C41008148 @default.
- W3119294675 hasConcept C41895202 @default.
- W3119294675 hasConcept C50644808 @default.
- W3119294675 hasConceptScore W3119294675C10138342 @default.
- W3119294675 hasConceptScore W3119294675C119857082 @default.
- W3119294675 hasConceptScore W3119294675C138885662 @default.
- W3119294675 hasConceptScore W3119294675C154945302 @default.
- W3119294675 hasConceptScore W3119294675C162324750 @default.
- W3119294675 hasConceptScore W3119294675C19244329 @default.
- W3119294675 hasConceptScore W3119294675C192576344 @default.
- W3119294675 hasConceptScore W3119294675C199354608 @default.
- W3119294675 hasConceptScore W3119294675C2776401178 @default.
- W3119294675 hasConceptScore W3119294675C41008148 @default.
- W3119294675 hasConceptScore W3119294675C41895202 @default.
- W3119294675 hasConceptScore W3119294675C50644808 @default.
- W3119294675 hasLocation W31192946751 @default.
- W3119294675 hasOpenAccess W3119294675 @default.
- W3119294675 hasPrimaryLocation W31192946751 @default.
- W3119294675 hasRelatedWork W12236409 @default.
- W3119294675 hasRelatedWork W1964999599 @default.
- W3119294675 hasRelatedWork W1966341317 @default.
- W3119294675 hasRelatedWork W1966922786 @default.
- W3119294675 hasRelatedWork W1972901431 @default.
- W3119294675 hasRelatedWork W2025544839 @default.
- W3119294675 hasRelatedWork W2068805783 @default.
- W3119294675 hasRelatedWork W2610255561 @default.
- W3119294675 hasRelatedWork W2805301523 @default.
- W3119294675 hasRelatedWork W2903243634 @default.
- W3119294675 hasRelatedWork W2949414332 @default.
- W3119294675 hasRelatedWork W2955734685 @default.
- W3119294675 hasRelatedWork W2994582788 @default.
- W3119294675 hasRelatedWork W3033899148 @default.
- W3119294675 hasRelatedWork W3043001028 @default.
- W3119294675 hasRelatedWork W3044752149 @default.
- W3119294675 hasRelatedWork W3052356208 @default.
- W3119294675 hasRelatedWork W3162623161 @default.
- W3119294675 hasRelatedWork W3187915196 @default.
- W3119294675 hasRelatedWork W3203473589 @default.
- W3119294675 isParatext "false" @default.
- W3119294675 isRetracted "false" @default.
- W3119294675 magId "3119294675" @default.
- W3119294675 workType "dissertation" @default.