Matches in SemOpenAlex for { <https://semopenalex.org/work/W3119302167> ?p ?o ?g. }
- W3119302167 endingPage "198" @default.
- W3119302167 startingPage "198" @default.
- W3119302167 abstract "Recently, generative adversarial network (GAN)-based methods for hyperspectral image (HSI) classification have attracted research attention due to their ability to alleviate the challenges brought by having limited labeled samples. However, several studies have demonstrated that existing GAN-based HSI classification methods are limited in redundant spectral knowledge and cannot extract discriminative characteristics, thus affecting classification performance. In addition, GAN-based methods always suffer from the model collapse, which seriously hinders their development. In this study, we proposed a semi-supervised adaptive weighting feature fusion generative adversarial network (AWF2-GAN) to alleviate these problems. We introduced unlabeled data to address the issue of having a small number of samples. First, to build valid spectral–spatial feature engineering, the discriminator learns both the dense global spectrum and neighboring separable spatial context via well-designed extractors. Second, a lightweight adaptive feature weighting component is proposed for feature fusion; it considers four predictive fusion options, that is, adding or concatenating feature maps with similar or adaptive weights. Finally, for the mode collapse, the proposed AWF2-GAN combines supervised central loss and unsupervised mean minimization loss for optimization. Quantitative results on two HSI datasets show that our AWF2-GAN achieves superior performance over state-of-the-art GAN-based methods." @default.
- W3119302167 created "2021-01-18" @default.
- W3119302167 creator A5046538842 @default.
- W3119302167 creator A5060761737 @default.
- W3119302167 creator A5064904127 @default.
- W3119302167 date "2021-01-08" @default.
- W3119302167 modified "2023-10-17" @default.
- W3119302167 title "Adaptive Weighting Feature Fusion Approach Based on Generative Adversarial Network for Hyperspectral Image Classification" @default.
- W3119302167 cites W1521436688 @default.
- W3119302167 cites W1985973695 @default.
- W3119302167 cites W2145339207 @default.
- W3119302167 cites W2314785379 @default.
- W3119302167 cites W2500751094 @default.
- W3119302167 cites W2548791488 @default.
- W3119302167 cites W2572303978 @default.
- W3119302167 cites W2606507269 @default.
- W3119302167 cites W2611655888 @default.
- W3119302167 cites W2625326743 @default.
- W3119302167 cites W2761781479 @default.
- W3119302167 cites W2764276316 @default.
- W3119302167 cites W2777427437 @default.
- W3119302167 cites W2782772130 @default.
- W3119302167 cites W2789643644 @default.
- W3119302167 cites W2791006446 @default.
- W3119302167 cites W2801324747 @default.
- W3119302167 cites W2822065499 @default.
- W3119302167 cites W2909664204 @default.
- W3119302167 cites W2912371366 @default.
- W3119302167 cites W2921445432 @default.
- W3119302167 cites W2942144748 @default.
- W3119302167 cites W2944413439 @default.
- W3119302167 cites W2944973963 @default.
- W3119302167 cites W2947712179 @default.
- W3119302167 cites W2962770389 @default.
- W3119302167 cites W2964074194 @default.
- W3119302167 cites W2970383558 @default.
- W3119302167 cites W2976820585 @default.
- W3119302167 cites W2980598835 @default.
- W3119302167 cites W2981901304 @default.
- W3119302167 cites W2989697276 @default.
- W3119302167 cites W2991494819 @default.
- W3119302167 cites W3002674187 @default.
- W3119302167 cites W3009144764 @default.
- W3119302167 cites W3015746332 @default.
- W3119302167 cites W3047317383 @default.
- W3119302167 cites W3080919303 @default.
- W3119302167 cites W3091107621 @default.
- W3119302167 cites W3091555486 @default.
- W3119302167 doi "https://doi.org/10.3390/rs13020198" @default.
- W3119302167 hasPublicationYear "2021" @default.
- W3119302167 type Work @default.
- W3119302167 sameAs 3119302167 @default.
- W3119302167 citedByCount "12" @default.
- W3119302167 countsByYear W31193021672021 @default.
- W3119302167 countsByYear W31193021672022 @default.
- W3119302167 countsByYear W31193021672023 @default.
- W3119302167 crossrefType "journal-article" @default.
- W3119302167 hasAuthorship W3119302167A5046538842 @default.
- W3119302167 hasAuthorship W3119302167A5060761737 @default.
- W3119302167 hasAuthorship W3119302167A5064904127 @default.
- W3119302167 hasBestOaLocation W31193021671 @default.
- W3119302167 hasConcept C119857082 @default.
- W3119302167 hasConcept C126838900 @default.
- W3119302167 hasConcept C138885662 @default.
- W3119302167 hasConcept C151730666 @default.
- W3119302167 hasConcept C153180895 @default.
- W3119302167 hasConcept C154945302 @default.
- W3119302167 hasConcept C159078339 @default.
- W3119302167 hasConcept C183115368 @default.
- W3119302167 hasConcept C2776401178 @default.
- W3119302167 hasConcept C2779343474 @default.
- W3119302167 hasConcept C2779803651 @default.
- W3119302167 hasConcept C41008148 @default.
- W3119302167 hasConcept C41895202 @default.
- W3119302167 hasConcept C59404180 @default.
- W3119302167 hasConcept C71924100 @default.
- W3119302167 hasConcept C76155785 @default.
- W3119302167 hasConcept C86803240 @default.
- W3119302167 hasConcept C94915269 @default.
- W3119302167 hasConcept C97931131 @default.
- W3119302167 hasConceptScore W3119302167C119857082 @default.
- W3119302167 hasConceptScore W3119302167C126838900 @default.
- W3119302167 hasConceptScore W3119302167C138885662 @default.
- W3119302167 hasConceptScore W3119302167C151730666 @default.
- W3119302167 hasConceptScore W3119302167C153180895 @default.
- W3119302167 hasConceptScore W3119302167C154945302 @default.
- W3119302167 hasConceptScore W3119302167C159078339 @default.
- W3119302167 hasConceptScore W3119302167C183115368 @default.
- W3119302167 hasConceptScore W3119302167C2776401178 @default.
- W3119302167 hasConceptScore W3119302167C2779343474 @default.
- W3119302167 hasConceptScore W3119302167C2779803651 @default.
- W3119302167 hasConceptScore W3119302167C41008148 @default.
- W3119302167 hasConceptScore W3119302167C41895202 @default.
- W3119302167 hasConceptScore W3119302167C59404180 @default.
- W3119302167 hasConceptScore W3119302167C71924100 @default.
- W3119302167 hasConceptScore W3119302167C76155785 @default.
- W3119302167 hasConceptScore W3119302167C86803240 @default.
- W3119302167 hasConceptScore W3119302167C94915269 @default.