Matches in SemOpenAlex for { <https://semopenalex.org/work/W3119322416> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W3119322416 endingPage "233" @default.
- W3119322416 startingPage "227" @default.
- W3119322416 abstract "Purpose of review Refinement in machine learning (ML) techniques and approaches has rapidly expanded artificial intelligence applications for the diagnosis and classification of heart failure (HF). This review is designed to provide the clinician with the basics of ML, as well as this technologies future utility in HF diagnosis and the potential impact on patient outcomes. Recent findings Recent studies applying ML methods to unique data sets available from electrocardiography, vectorcardiography, echocardiography, and electronic health records show significant promise for improving diagnosis, enhancing detection, and advancing treatment of HF. Innovations in both supervised and unsupervised methods have heightened the diagnostic accuracy of models developed to identify the presence of HF and further augmentation of model capabilities are likely utilizing ensembles of ML algorithms derived from different techniques. Summary This article is an overview of recent applications of ML to achieve improved diagnosis of HF and the resultant implications for patient management." @default.
- W3119322416 created "2021-01-18" @default.
- W3119322416 creator A5006427304 @default.
- W3119322416 creator A5081747549 @default.
- W3119322416 creator A5085510655 @default.
- W3119322416 creator A5087105366 @default.
- W3119322416 date "2021-01-12" @default.
- W3119322416 modified "2023-09-27" @default.
- W3119322416 title "Machine learning: at the heart of failure diagnosis" @default.
- W3119322416 cites W1498436455 @default.
- W3119322416 cites W1977568891 @default.
- W3119322416 cites W2044252003 @default.
- W3119322416 cites W2084341220 @default.
- W3119322416 cites W2119340816 @default.
- W3119322416 cites W2122825543 @default.
- W3119322416 cites W2168800956 @default.
- W3119322416 cites W2271166337 @default.
- W3119322416 cites W2297622429 @default.
- W3119322416 cites W2302877473 @default.
- W3119322416 cites W2528922468 @default.
- W3119322416 cites W2551678781 @default.
- W3119322416 cites W2555734295 @default.
- W3119322416 cites W2557738935 @default.
- W3119322416 cites W2559553341 @default.
- W3119322416 cites W2581082771 @default.
- W3119322416 cites W2606140861 @default.
- W3119322416 cites W2612219720 @default.
- W3119322416 cites W2796979148 @default.
- W3119322416 cites W2801357935 @default.
- W3119322416 cites W2802832784 @default.
- W3119322416 cites W2804511116 @default.
- W3119322416 cites W2896287590 @default.
- W3119322416 cites W2901226889 @default.
- W3119322416 cites W2911964244 @default.
- W3119322416 cites W2919115771 @default.
- W3119322416 cites W2946751363 @default.
- W3119322416 cites W2974289453 @default.
- W3119322416 cites W2995574841 @default.
- W3119322416 cites W3003299879 @default.
- W3119322416 cites W3009885589 @default.
- W3119322416 cites W3011552775 @default.
- W3119322416 cites W3011559677 @default.
- W3119322416 cites W3016808868 @default.
- W3119322416 cites W3042698632 @default.
- W3119322416 cites W3047391569 @default.
- W3119322416 cites W3066799101 @default.
- W3119322416 cites W4293860347 @default.
- W3119322416 doi "https://doi.org/10.1097/hco.0000000000000833" @default.
- W3119322416 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33443957" @default.
- W3119322416 hasPublicationYear "2021" @default.
- W3119322416 type Work @default.
- W3119322416 sameAs 3119322416 @default.
- W3119322416 citedByCount "8" @default.
- W3119322416 countsByYear W31193224162021 @default.
- W3119322416 countsByYear W31193224162022 @default.
- W3119322416 countsByYear W31193224162023 @default.
- W3119322416 crossrefType "journal-article" @default.
- W3119322416 hasAuthorship W3119322416A5006427304 @default.
- W3119322416 hasAuthorship W3119322416A5081747549 @default.
- W3119322416 hasAuthorship W3119322416A5085510655 @default.
- W3119322416 hasAuthorship W3119322416A5087105366 @default.
- W3119322416 hasConcept C119857082 @default.
- W3119322416 hasConcept C154945302 @default.
- W3119322416 hasConcept C164705383 @default.
- W3119322416 hasConcept C2778198053 @default.
- W3119322416 hasConcept C2780040984 @default.
- W3119322416 hasConcept C2780486913 @default.
- W3119322416 hasConcept C41008148 @default.
- W3119322416 hasConcept C71924100 @default.
- W3119322416 hasConceptScore W3119322416C119857082 @default.
- W3119322416 hasConceptScore W3119322416C154945302 @default.
- W3119322416 hasConceptScore W3119322416C164705383 @default.
- W3119322416 hasConceptScore W3119322416C2778198053 @default.
- W3119322416 hasConceptScore W3119322416C2780040984 @default.
- W3119322416 hasConceptScore W3119322416C2780486913 @default.
- W3119322416 hasConceptScore W3119322416C41008148 @default.
- W3119322416 hasConceptScore W3119322416C71924100 @default.
- W3119322416 hasIssue "2" @default.
- W3119322416 hasLocation W31193224161 @default.
- W3119322416 hasLocation W31193224162 @default.
- W3119322416 hasOpenAccess W3119322416 @default.
- W3119322416 hasPrimaryLocation W31193224161 @default.
- W3119322416 hasRelatedWork W1495686918 @default.
- W3119322416 hasRelatedWork W1984421894 @default.
- W3119322416 hasRelatedWork W2410150540 @default.
- W3119322416 hasRelatedWork W2961085424 @default.
- W3119322416 hasRelatedWork W3087212356 @default.
- W3119322416 hasRelatedWork W4236600872 @default.
- W3119322416 hasRelatedWork W4247718175 @default.
- W3119322416 hasRelatedWork W4302353557 @default.
- W3119322416 hasRelatedWork W4306674287 @default.
- W3119322416 hasRelatedWork W4224009465 @default.
- W3119322416 hasVolume "36" @default.
- W3119322416 isParatext "false" @default.
- W3119322416 isRetracted "false" @default.
- W3119322416 magId "3119322416" @default.
- W3119322416 workType "article" @default.