Matches in SemOpenAlex for { <https://semopenalex.org/work/W3119324419> ?p ?o ?g. }
- W3119324419 endingPage "322" @default.
- W3119324419 startingPage "313" @default.
- W3119324419 abstract "Video recognition aims at understanding semantic contents that normally involve the interactions of humans and related objects under certain scenes. A common practice to improve recognition accuracy is to combine object, scene and action features for classification directly, assuming that they are explicitly complementary. In this paper, we break down the fusion of three features into two pairwise feature relation modeling processes, which mitigates the difficulty of correlation learning in high dimensional features. Towards this goal, we introduce a Semantics Attention Module that captures the relations of a pair of features by refining the relatively “weak” feature with the guidance from the “strong” feature using attention mechanisms. The refined representation is further combined with the “strong” feature using a residual design for downstream tasks. Two SAMs are applied in a Semantics Attention Network (SAN) for improving video recognition. Extensive experiments are conducted on two large-scale video benchmarks, FCVID and ActivityNet v1.3—the proposed approach achieves better results while requiring much less computational effort than alternative methods." @default.
- W3119324419 created "2021-01-18" @default.
- W3119324419 creator A5026167547 @default.
- W3119324419 creator A5047962986 @default.
- W3119324419 creator A5060677081 @default.
- W3119324419 date "2022-01-01" @default.
- W3119324419 modified "2023-10-17" @default.
- W3119324419 title "SAM: Modeling Scene, Object and Action With Semantics Attention Modules for Video Recognition" @default.
- W3119324419 cites W1777628566 @default.
- W3119324419 cites W1927052826 @default.
- W3119324419 cites W1954433395 @default.
- W3119324419 cites W1989085630 @default.
- W3119324419 cites W2068611653 @default.
- W3119324419 cites W2101443479 @default.
- W3119324419 cites W2105101328 @default.
- W3119324419 cites W2139395976 @default.
- W3119324419 cites W2161565164 @default.
- W3119324419 cites W2161969291 @default.
- W3119324419 cites W2164507085 @default.
- W3119324419 cites W2194775991 @default.
- W3119324419 cites W2216674905 @default.
- W3119324419 cites W2342662179 @default.
- W3119324419 cites W2473032611 @default.
- W3119324419 cites W2608988379 @default.
- W3119324419 cites W2732026016 @default.
- W3119324419 cites W2739107216 @default.
- W3119324419 cites W2770446450 @default.
- W3119324419 cites W2777300582 @default.
- W3119324419 cites W2802501778 @default.
- W3119324419 cites W2809273606 @default.
- W3119324419 cites W2894608918 @default.
- W3119324419 cites W2897426518 @default.
- W3119324419 cites W2904017099 @default.
- W3119324419 cites W2906314281 @default.
- W3119324419 cites W2913302158 @default.
- W3119324419 cites W2920882913 @default.
- W3119324419 cites W2950568498 @default.
- W3119324419 cites W2951019013 @default.
- W3119324419 cites W2962711930 @default.
- W3119324419 cites W2962899219 @default.
- W3119324419 cites W2963082988 @default.
- W3119324419 cites W2963091558 @default.
- W3119324419 cites W2963176022 @default.
- W3119324419 cites W2963274633 @default.
- W3119324419 cites W2963405520 @default.
- W3119324419 cites W2963722382 @default.
- W3119324419 cites W2963820951 @default.
- W3119324419 cites W2964214371 @default.
- W3119324419 cites W2990152177 @default.
- W3119324419 cites W2990503944 @default.
- W3119324419 cites W2992457155 @default.
- W3119324419 cites W3010010212 @default.
- W3119324419 cites W3034572008 @default.
- W3119324419 cites W3034658206 @default.
- W3119324419 cites W3035180180 @default.
- W3119324419 cites W3035730922 @default.
- W3119324419 cites W3037046522 @default.
- W3119324419 cites W3100183449 @default.
- W3119324419 cites W3138121279 @default.
- W3119324419 doi "https://doi.org/10.1109/tmm.2021.3050058" @default.
- W3119324419 hasPublicationYear "2022" @default.
- W3119324419 type Work @default.
- W3119324419 sameAs 3119324419 @default.
- W3119324419 citedByCount "2" @default.
- W3119324419 countsByYear W31193244192022 @default.
- W3119324419 countsByYear W31193244192023 @default.
- W3119324419 crossrefType "journal-article" @default.
- W3119324419 hasAuthorship W3119324419A5026167547 @default.
- W3119324419 hasAuthorship W3119324419A5047962986 @default.
- W3119324419 hasAuthorship W3119324419A5060677081 @default.
- W3119324419 hasConcept C119857082 @default.
- W3119324419 hasConcept C121332964 @default.
- W3119324419 hasConcept C124101348 @default.
- W3119324419 hasConcept C138885662 @default.
- W3119324419 hasConcept C153180895 @default.
- W3119324419 hasConcept C154945302 @default.
- W3119324419 hasConcept C17744445 @default.
- W3119324419 hasConcept C184337299 @default.
- W3119324419 hasConcept C184898388 @default.
- W3119324419 hasConcept C199360897 @default.
- W3119324419 hasConcept C199539241 @default.
- W3119324419 hasConcept C204321447 @default.
- W3119324419 hasConcept C25343380 @default.
- W3119324419 hasConcept C2776359362 @default.
- W3119324419 hasConcept C2776401178 @default.
- W3119324419 hasConcept C2780791683 @default.
- W3119324419 hasConcept C2781122975 @default.
- W3119324419 hasConcept C2781238097 @default.
- W3119324419 hasConcept C41008148 @default.
- W3119324419 hasConcept C41895202 @default.
- W3119324419 hasConcept C52622490 @default.
- W3119324419 hasConcept C62520636 @default.
- W3119324419 hasConcept C64876066 @default.
- W3119324419 hasConcept C94625758 @default.
- W3119324419 hasConceptScore W3119324419C119857082 @default.
- W3119324419 hasConceptScore W3119324419C121332964 @default.
- W3119324419 hasConceptScore W3119324419C124101348 @default.
- W3119324419 hasConceptScore W3119324419C138885662 @default.