Matches in SemOpenAlex for { <https://semopenalex.org/work/W3119335550> ?p ?o ?g. }
- W3119335550 endingPage "2162" @default.
- W3119335550 startingPage "2152" @default.
- W3119335550 abstract "Exposure to fine particulate matter (PM2.5) has become a major global health concern. Although modeling exposure to PM2.5 has been examined in China, accurate long-term assessment of PM2.5 exposure with high spatiotemporal resolution at the national scale is still challenging. We aimed to establish a hybrid spatiotemporal modeling framework for PM2.5 in China that incorporated extensive predictor variables (satellite, chemical transport model, geographic, and meteorological data) and advanced machine learning methods to support long-term and short-term health studies. The modeling framework included three stages: (1) filling satellite aerosol optical depth (AOD) missing values; (2) modeling 1 km × 1 km daily PM2.5 concentrations at a national scale using extensive covariates; and (3) downscaling daily PM2.5 predictions to 100-m resolution at a city scale. We achieved good model performances with spatial cross-validation (CV) R2 of 0.92 and temporal CV R2 of 0.85 at the air quality sites across the country. We then estimated daily PM2.5 concentrations in China from 2013 to 2019 at 1 km × 1 km grid cells. The downscaled predictions at 100 m resolution greatly improved the spatial variation of PM2.5 concentrations at the city scale. The framework and data set generated in this study could be useful to PM2.5 exposure assessment and epidemiological studies." @default.
- W3119335550 created "2021-01-18" @default.
- W3119335550 creator A5022883128 @default.
- W3119335550 creator A5036726873 @default.
- W3119335550 creator A5036761511 @default.
- W3119335550 creator A5054806035 @default.
- W3119335550 creator A5073941796 @default.
- W3119335550 date "2021-01-15" @default.
- W3119335550 modified "2023-10-16" @default.
- W3119335550 title "High-Resolution Spatiotemporal Modeling for Ambient PM<sub>2.5</sub> Exposure Assessment in China from 2013 to 2019" @default.
- W3119335550 cites W1173523477 @default.
- W3119335550 cites W1606767976 @default.
- W3119335550 cites W1617145133 @default.
- W3119335550 cites W1971626891 @default.
- W3119335550 cites W1976991085 @default.
- W3119335550 cites W2001510610 @default.
- W3119335550 cites W2011500029 @default.
- W3119335550 cites W2018154100 @default.
- W3119335550 cites W2031528200 @default.
- W3119335550 cites W2056132907 @default.
- W3119335550 cites W2057829983 @default.
- W3119335550 cites W2067129339 @default.
- W3119335550 cites W2092998278 @default.
- W3119335550 cites W2098189516 @default.
- W3119335550 cites W2101982704 @default.
- W3119335550 cites W2107620525 @default.
- W3119335550 cites W2112776483 @default.
- W3119335550 cites W2136624896 @default.
- W3119335550 cites W2141180304 @default.
- W3119335550 cites W2161245744 @default.
- W3119335550 cites W2284873887 @default.
- W3119335550 cites W2297827415 @default.
- W3119335550 cites W2312602772 @default.
- W3119335550 cites W2323483937 @default.
- W3119335550 cites W2336797181 @default.
- W3119335550 cites W2340400090 @default.
- W3119335550 cites W2399184460 @default.
- W3119335550 cites W2402291092 @default.
- W3119335550 cites W2405742917 @default.
- W3119335550 cites W2417531352 @default.
- W3119335550 cites W2419137754 @default.
- W3119335550 cites W2486429029 @default.
- W3119335550 cites W2509762016 @default.
- W3119335550 cites W2512936980 @default.
- W3119335550 cites W2531469489 @default.
- W3119335550 cites W2551234371 @default.
- W3119335550 cites W2588978790 @default.
- W3119335550 cites W2602110992 @default.
- W3119335550 cites W2725897987 @default.
- W3119335550 cites W2737242952 @default.
- W3119335550 cites W2742946820 @default.
- W3119335550 cites W2745095037 @default.
- W3119335550 cites W2761974490 @default.
- W3119335550 cites W2767631445 @default.
- W3119335550 cites W2768049522 @default.
- W3119335550 cites W2776069591 @default.
- W3119335550 cites W2800133189 @default.
- W3119335550 cites W2804444396 @default.
- W3119335550 cites W2808247753 @default.
- W3119335550 cites W2865430977 @default.
- W3119335550 cites W2888926545 @default.
- W3119335550 cites W2890012302 @default.
- W3119335550 cites W2890701797 @default.
- W3119335550 cites W2895340159 @default.
- W3119335550 cites W2898407312 @default.
- W3119335550 cites W2901206819 @default.
- W3119335550 cites W2903932790 @default.
- W3119335550 cites W2904851601 @default.
- W3119335550 cites W2911964244 @default.
- W3119335550 cites W2912750253 @default.
- W3119335550 cites W2937182631 @default.
- W3119335550 cites W2947789454 @default.
- W3119335550 cites W2949220266 @default.
- W3119335550 cites W2952297896 @default.
- W3119335550 cites W2953978338 @default.
- W3119335550 cites W2954586028 @default.
- W3119335550 cites W2970481843 @default.
- W3119335550 cites W2975879014 @default.
- W3119335550 cites W2980677721 @default.
- W3119335550 cites W2990323597 @default.
- W3119335550 cites W3006298073 @default.
- W3119335550 cites W3010608244 @default.
- W3119335550 cites W3023194710 @default.
- W3119335550 cites W3030103373 @default.
- W3119335550 cites W3032398021 @default.
- W3119335550 cites W3037226097 @default.
- W3119335550 cites W3039346021 @default.
- W3119335550 cites W3042302995 @default.
- W3119335550 cites W3087525052 @default.
- W3119335550 cites W590735017 @default.
- W3119335550 cites W642642342 @default.
- W3119335550 doi "https://doi.org/10.1021/acs.est.0c05815" @default.
- W3119335550 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33448849" @default.
- W3119335550 hasPublicationYear "2021" @default.
- W3119335550 type Work @default.
- W3119335550 sameAs 3119335550 @default.
- W3119335550 citedByCount "58" @default.
- W3119335550 countsByYear W31193355502021 @default.