Matches in SemOpenAlex for { <https://semopenalex.org/work/W3119351314> ?p ?o ?g. }
- W3119351314 endingPage "197" @default.
- W3119351314 startingPage "197" @default.
- W3119351314 abstract "Lava flow mapping has direct relevance to volcanic hazards once an eruption has begun. Satellite remote sensing techniques are increasingly used to map newly erupted lava, thanks to their capability to survey large areas with frequent revisit time and accurate spatial resolution. Visible and infrared satellite data are routinely used to detect the distributions of volcanic deposits and monitor thermal features, even if clouds are a serious obstacle for optical sensors, since they cannot be penetrated by optical radiation. On the other hand, radar satellite data have been playing an important role in surface change detection and image classification, being able to operate in all weather conditions, although their use is hampered by the special imaging geometry, the complicated scattering process, and the presence of speckle noise. Thus, optical and radar data are complementary data sources that can be used to map lava flows effectively, in addition to alleviating cloud obstruction and improving change detection performance. Here, we propose a machine learning approach based on the Google Earth Engine (GEE) platform to analyze simultaneously the images acquired by the synthetic aperture radar (SAR) sensor, on board of Sentinel-1 mission, and by optical and multispectral sensors of Landsat-8 missions and Multi-Spectral Imager (MSI), on board of Sentinel-2 mission. Machine learning classifiers, including K-means algorithm (K-means) and support vector machine (SVM), are used to map lava flows automatically from a combination of optical and SAR images. We describe the operation of this approach by using a retrospective analysis of two recent lava flow-forming eruptions at Mount Etna (Italy) and Fogo Island (Cape Verde). We found that combining both radar and optical imagery improved the accuracy and reliability of lava flow mapping. The results highlight the need to fully exploit the extraordinary potential of complementary satellite sensors to provide time-critical hazard information during volcanic eruptions." @default.
- W3119351314 created "2021-01-18" @default.
- W3119351314 creator A5043670176 @default.
- W3119351314 creator A5049559268 @default.
- W3119351314 creator A5053400849 @default.
- W3119351314 creator A5053813093 @default.
- W3119351314 creator A5090041338 @default.
- W3119351314 date "2021-01-02" @default.
- W3119351314 modified "2023-10-02" @default.
- W3119351314 title "Combining Radar and Optical Satellite Imagery with Machine Learning to Map Lava Flows at Mount Etna and Fogo Island" @default.
- W3119351314 cites W1596717185 @default.
- W3119351314 cites W1621691549 @default.
- W3119351314 cites W1972256727 @default.
- W3119351314 cites W1976528655 @default.
- W3119351314 cites W2002537525 @default.
- W3119351314 cites W2004736578 @default.
- W3119351314 cites W2010592030 @default.
- W3119351314 cites W2019605235 @default.
- W3119351314 cites W2021475402 @default.
- W3119351314 cites W2028320889 @default.
- W3119351314 cites W2035602824 @default.
- W3119351314 cites W2050618220 @default.
- W3119351314 cites W2056453128 @default.
- W3119351314 cites W2068056365 @default.
- W3119351314 cites W2084653982 @default.
- W3119351314 cites W2109012357 @default.
- W3119351314 cites W2123471322 @default.
- W3119351314 cites W2127051400 @default.
- W3119351314 cites W2136144461 @default.
- W3119351314 cites W2171371972 @default.
- W3119351314 cites W2171769107 @default.
- W3119351314 cites W2196130311 @default.
- W3119351314 cites W2198129630 @default.
- W3119351314 cites W2299359736 @default.
- W3119351314 cites W2415872553 @default.
- W3119351314 cites W2602069462 @default.
- W3119351314 cites W2605395411 @default.
- W3119351314 cites W2725897987 @default.
- W3119351314 cites W2793927960 @default.
- W3119351314 cites W2808273658 @default.
- W3119351314 cites W2899730113 @default.
- W3119351314 cites W2924534750 @default.
- W3119351314 cites W2963008249 @default.
- W3119351314 cites W2969232301 @default.
- W3119351314 cites W2987033638 @default.
- W3119351314 cites W2991298633 @default.
- W3119351314 cites W2993499036 @default.
- W3119351314 cites W3006379761 @default.
- W3119351314 cites W3008263964 @default.
- W3119351314 cites W3010885595 @default.
- W3119351314 cites W3012161103 @default.
- W3119351314 cites W3024671755 @default.
- W3119351314 cites W3090000537 @default.
- W3119351314 doi "https://doi.org/10.3390/en14010197" @default.
- W3119351314 hasPublicationYear "2021" @default.
- W3119351314 type Work @default.
- W3119351314 sameAs 3119351314 @default.
- W3119351314 citedByCount "15" @default.
- W3119351314 countsByYear W31193513142021 @default.
- W3119351314 countsByYear W31193513142022 @default.
- W3119351314 countsByYear W31193513142023 @default.
- W3119351314 crossrefType "journal-article" @default.
- W3119351314 hasAuthorship W3119351314A5043670176 @default.
- W3119351314 hasAuthorship W3119351314A5049559268 @default.
- W3119351314 hasAuthorship W3119351314A5053400849 @default.
- W3119351314 hasAuthorship W3119351314A5053813093 @default.
- W3119351314 hasAuthorship W3119351314A5090041338 @default.
- W3119351314 hasBestOaLocation W31193513141 @default.
- W3119351314 hasConcept C113754120 @default.
- W3119351314 hasConcept C120806208 @default.
- W3119351314 hasConcept C127313418 @default.
- W3119351314 hasConcept C127413603 @default.
- W3119351314 hasConcept C146978453 @default.
- W3119351314 hasConcept C154945302 @default.
- W3119351314 hasConcept C165205528 @default.
- W3119351314 hasConcept C173163844 @default.
- W3119351314 hasConcept C19269812 @default.
- W3119351314 hasConcept C41008148 @default.
- W3119351314 hasConcept C554190296 @default.
- W3119351314 hasConcept C62649853 @default.
- W3119351314 hasConcept C76155785 @default.
- W3119351314 hasConcept C87360688 @default.
- W3119351314 hasConceptScore W3119351314C113754120 @default.
- W3119351314 hasConceptScore W3119351314C120806208 @default.
- W3119351314 hasConceptScore W3119351314C127313418 @default.
- W3119351314 hasConceptScore W3119351314C127413603 @default.
- W3119351314 hasConceptScore W3119351314C146978453 @default.
- W3119351314 hasConceptScore W3119351314C154945302 @default.
- W3119351314 hasConceptScore W3119351314C165205528 @default.
- W3119351314 hasConceptScore W3119351314C173163844 @default.
- W3119351314 hasConceptScore W3119351314C19269812 @default.
- W3119351314 hasConceptScore W3119351314C41008148 @default.
- W3119351314 hasConceptScore W3119351314C554190296 @default.
- W3119351314 hasConceptScore W3119351314C62649853 @default.
- W3119351314 hasConceptScore W3119351314C76155785 @default.
- W3119351314 hasConceptScore W3119351314C87360688 @default.
- W3119351314 hasIssue "1" @default.
- W3119351314 hasLocation W31193513141 @default.