Matches in SemOpenAlex for { <https://semopenalex.org/work/W3119361471> ?p ?o ?g. }
- W3119361471 abstract "In this paper, machine learning and artificial neural network models are proposed for quantum noise classification in stochastic quantum dynamics. For this purpose, we train and then validate support vector machine, multi-layer perceptron and recurrent neural network, models with different complexity and accuracy, to solve supervised binary classification problems. By exploiting the quantum random walk formalism, we demonstrate the high efficacy of such tools in classifying noisy quantum dynamics using data sets collected in a single realisation of the quantum system evolution. In addition, we also show that for a successful classification one just needs to measure, in a sequence of discrete time instants, the probabilities that the analysed quantum system is in one of the allowed positions or energy configurations, without any external driving. Thus, neither measurements of quantum coherences nor sequences of control pulses are required. Since in principle the training of the machine learning models can be performed a-priori on synthetic data, our approach is expected to find direct application in a vast number of experimental schemes and also for the noise benchmarking of the already available noisy intermediate-scale quantum devices." @default.
- W3119361471 created "2021-01-18" @default.
- W3119361471 creator A5025624200 @default.
- W3119361471 creator A5038373691 @default.
- W3119361471 creator A5044565003 @default.
- W3119361471 date "2021-01-08" @default.
- W3119361471 modified "2023-09-27" @default.
- W3119361471 title "Machine learning approach for quantum non-Markovian noise classification." @default.
- W3119361471 cites W114517082 @default.
- W3119361471 cites W1488990279 @default.
- W3119361471 cites W1499848126 @default.
- W3119361471 cites W1554944419 @default.
- W3119361471 cites W1578322733 @default.
- W3119361471 cites W1598796236 @default.
- W3119361471 cites W1663973292 @default.
- W3119361471 cites W1665214252 @default.
- W3119361471 cites W1828163288 @default.
- W3119361471 cites W1902237438 @default.
- W3119361471 cites W1966092221 @default.
- W3119361471 cites W1992629111 @default.
- W3119361471 cites W2001672996 @default.
- W3119361471 cites W2031064922 @default.
- W3119361471 cites W2055961543 @default.
- W3119361471 cites W2069143585 @default.
- W3119361471 cites W2076063813 @default.
- W3119361471 cites W2078199982 @default.
- W3119361471 cites W2091825929 @default.
- W3119361471 cites W2097998348 @default.
- W3119361471 cites W2106411961 @default.
- W3119361471 cites W2107878631 @default.
- W3119361471 cites W2113207845 @default.
- W3119361471 cites W2117539524 @default.
- W3119361471 cites W2118706537 @default.
- W3119361471 cites W2130942839 @default.
- W3119361471 cites W2131241448 @default.
- W3119361471 cites W2144513243 @default.
- W3119361471 cites W2156387975 @default.
- W3119361471 cites W2156876426 @default.
- W3119361471 cites W2157331557 @default.
- W3119361471 cites W2250966211 @default.
- W3119361471 cites W2310671108 @default.
- W3119361471 cites W2470673105 @default.
- W3119361471 cites W2606089314 @default.
- W3119361471 cites W2618530766 @default.
- W3119361471 cites W2801095554 @default.
- W3119361471 cites W2883265831 @default.
- W3119361471 cites W2948990614 @default.
- W3119361471 cites W2963724773 @default.
- W3119361471 cites W2963928953 @default.
- W3119361471 cites W2964121744 @default.
- W3119361471 cites W2964308564 @default.
- W3119361471 cites W2981125727 @default.
- W3119361471 cites W3006781240 @default.
- W3119361471 cites W3012256938 @default.
- W3119361471 cites W3037833767 @default.
- W3119361471 cites W3082903675 @default.
- W3119361471 cites W3090724019 @default.
- W3119361471 cites W3098063022 @default.
- W3119361471 cites W3099083338 @default.
- W3119361471 cites W3099737060 @default.
- W3119361471 cites W3100636388 @default.
- W3119361471 cites W3101625830 @default.
- W3119361471 cites W3102144021 @default.
- W3119361471 cites W3105820062 @default.
- W3119361471 cites W3146803896 @default.
- W3119361471 cites W607505555 @default.
- W3119361471 cites W792163153 @default.
- W3119361471 cites W854541894 @default.
- W3119361471 hasPublicationYear "2021" @default.
- W3119361471 type Work @default.
- W3119361471 sameAs 3119361471 @default.
- W3119361471 citedByCount "2" @default.
- W3119361471 countsByYear W31193614712021 @default.
- W3119361471 crossrefType "posted-content" @default.
- W3119361471 hasAuthorship W3119361471A5025624200 @default.
- W3119361471 hasAuthorship W3119361471A5038373691 @default.
- W3119361471 hasAuthorship W3119361471A5044565003 @default.
- W3119361471 hasConcept C11413529 @default.
- W3119361471 hasConcept C115961682 @default.
- W3119361471 hasConcept C119857082 @default.
- W3119361471 hasConcept C121332964 @default.
- W3119361471 hasConcept C12267149 @default.
- W3119361471 hasConcept C154945302 @default.
- W3119361471 hasConcept C41008148 @default.
- W3119361471 hasConcept C50644808 @default.
- W3119361471 hasConcept C60908668 @default.
- W3119361471 hasConcept C62520636 @default.
- W3119361471 hasConcept C84114770 @default.
- W3119361471 hasConcept C99498987 @default.
- W3119361471 hasConceptScore W3119361471C11413529 @default.
- W3119361471 hasConceptScore W3119361471C115961682 @default.
- W3119361471 hasConceptScore W3119361471C119857082 @default.
- W3119361471 hasConceptScore W3119361471C121332964 @default.
- W3119361471 hasConceptScore W3119361471C12267149 @default.
- W3119361471 hasConceptScore W3119361471C154945302 @default.
- W3119361471 hasConceptScore W3119361471C41008148 @default.
- W3119361471 hasConceptScore W3119361471C50644808 @default.
- W3119361471 hasConceptScore W3119361471C60908668 @default.
- W3119361471 hasConceptScore W3119361471C62520636 @default.
- W3119361471 hasConceptScore W3119361471C84114770 @default.