Matches in SemOpenAlex for { <https://semopenalex.org/work/W3119370802> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W3119370802 endingPage "17" @default.
- W3119370802 startingPage "17" @default.
- W3119370802 abstract "Digital images, and in particular satellite images acquired by different sensors, may present defects due to many causes. Since 2013, the Landsat 7 mission has been affected by a well-known issue related to the malfunctioning of the Scan Line Corrector producing very characteristic strips of missing data in the imagery bands. Within the vast and interdisciplinary image reconstruction application field, many works have been presented in the last few decades to tackle the specific Landsat 7 gap-filling problem. This work proposes another contribution in this field presenting an original procedure based on a variational image segmentation model coupled with radiometric analysis to reconstruct damaged images acquired in a multi-temporal scenario, typical in satellite remote sensing. The key idea is to exploit some specific features of the Mumford–Shah variational model for image segmentation in order to ease the detection of homogeneous regions which will then be used to form a set of coherent data necessary for the radiometric reconstruction of damaged regions. Two reconstruction approaches are presented and applied to SLC-off Landsat 7 data. One approach is based on the well-known histogram matching transformation, the other approach is based on eigendecomposition of the bands covariance matrix and on the sampling from Gaussian distributions. The performance of the procedure is assessed by application to artificially damaged images for self-validation testing. Both of the proposed reconstruction approaches had led to remarkable results. An application to very high resolution WorldView-3 data shows how the procedure based on variational segmentation allows an effective reconstruction of images presenting a great level of geometric complexity." @default.
- W3119370802 created "2021-01-18" @default.
- W3119370802 creator A5048813568 @default.
- W3119370802 creator A5086169247 @default.
- W3119370802 date "2021-01-06" @default.
- W3119370802 modified "2023-09-27" @default.
- W3119370802 title "Reconstruction of Multi-Temporal Satellite Imagery by Coupling Variational Segmentation and Radiometric Analysis" @default.
- W3119370802 cites W129305155 @default.
- W3119370802 cites W1655403841 @default.
- W3119370802 cites W1980618728 @default.
- W3119370802 cites W2001547114 @default.
- W3119370802 cites W2014167115 @default.
- W3119370802 cites W2014327882 @default.
- W3119370802 cites W2023728704 @default.
- W3119370802 cites W2024720646 @default.
- W3119370802 cites W2030851497 @default.
- W3119370802 cites W2030922770 @default.
- W3119370802 cites W2035839082 @default.
- W3119370802 cites W2075665468 @default.
- W3119370802 cites W2082137964 @default.
- W3119370802 cites W2085793179 @default.
- W3119370802 cites W2114487471 @default.
- W3119370802 cites W2567087303 @default.
- W3119370802 cites W2598204226 @default.
- W3119370802 cites W2752922896 @default.
- W3119370802 cites W2794382294 @default.
- W3119370802 cites W2891867324 @default.
- W3119370802 cites W2894886653 @default.
- W3119370802 cites W2906684616 @default.
- W3119370802 cites W2916589414 @default.
- W3119370802 cites W2991402358 @default.
- W3119370802 cites W3103964896 @default.
- W3119370802 cites W40037269 @default.
- W3119370802 cites W57994782 @default.
- W3119370802 doi "https://doi.org/10.3390/ijgi10010017" @default.
- W3119370802 hasPublicationYear "2021" @default.
- W3119370802 type Work @default.
- W3119370802 sameAs 3119370802 @default.
- W3119370802 citedByCount "1" @default.
- W3119370802 countsByYear W31193708022022 @default.
- W3119370802 crossrefType "journal-article" @default.
- W3119370802 hasAuthorship W3119370802A5048813568 @default.
- W3119370802 hasAuthorship W3119370802A5086169247 @default.
- W3119370802 hasBestOaLocation W31193708021 @default.
- W3119370802 hasConcept C115961682 @default.
- W3119370802 hasConcept C124504099 @default.
- W3119370802 hasConcept C154945302 @default.
- W3119370802 hasConcept C205649164 @default.
- W3119370802 hasConcept C2778102629 @default.
- W3119370802 hasConcept C31972630 @default.
- W3119370802 hasConcept C41008148 @default.
- W3119370802 hasConcept C53533937 @default.
- W3119370802 hasConcept C62649853 @default.
- W3119370802 hasConcept C89600930 @default.
- W3119370802 hasConceptScore W3119370802C115961682 @default.
- W3119370802 hasConceptScore W3119370802C124504099 @default.
- W3119370802 hasConceptScore W3119370802C154945302 @default.
- W3119370802 hasConceptScore W3119370802C205649164 @default.
- W3119370802 hasConceptScore W3119370802C2778102629 @default.
- W3119370802 hasConceptScore W3119370802C31972630 @default.
- W3119370802 hasConceptScore W3119370802C41008148 @default.
- W3119370802 hasConceptScore W3119370802C53533937 @default.
- W3119370802 hasConceptScore W3119370802C62649853 @default.
- W3119370802 hasConceptScore W3119370802C89600930 @default.
- W3119370802 hasIssue "1" @default.
- W3119370802 hasLocation W31193708021 @default.
- W3119370802 hasLocation W31193708022 @default.
- W3119370802 hasOpenAccess W3119370802 @default.
- W3119370802 hasPrimaryLocation W31193708021 @default.
- W3119370802 hasRelatedWork W1507266234 @default.
- W3119370802 hasRelatedWork W1669643531 @default.
- W3119370802 hasRelatedWork W2110230079 @default.
- W3119370802 hasRelatedWork W2117664411 @default.
- W3119370802 hasRelatedWork W2117933325 @default.
- W3119370802 hasRelatedWork W2122581818 @default.
- W3119370802 hasRelatedWork W2159066190 @default.
- W3119370802 hasRelatedWork W2549936415 @default.
- W3119370802 hasRelatedWork W2739874619 @default.
- W3119370802 hasRelatedWork W1967061043 @default.
- W3119370802 hasVolume "10" @default.
- W3119370802 isParatext "false" @default.
- W3119370802 isRetracted "false" @default.
- W3119370802 magId "3119370802" @default.
- W3119370802 workType "article" @default.