Matches in SemOpenAlex for { <https://semopenalex.org/work/W3119429736> ?p ?o ?g. }
- W3119429736 endingPage "1308" @default.
- W3119429736 startingPage "1296" @default.
- W3119429736 abstract "A brain tumor is an uncontrolled development of brain cells in brain cancer if not detected at an early stage. Early brain tumor diagnosis plays a crucial role in treatment planning and patients' survival rate. There are distinct forms, properties, and therapies of brain tumors. Therefore, manual brain tumor detection is complicated, time-consuming, and vulnerable to error. Hence, automated computer-assisted diagnosis at high precision is currently in demand. This article presents segmentation through Unet architecture with ResNet50 as a backbone on the Figshare data set and achieved a level of 0.9504 of the intersection over union (IoU). The preprocessing and data augmentation concept were introduced to enhance the classification rate. The multi-classification of brain tumors is performed using evolutionary algorithms and reinforcement learning through transfer learning. Other deep learning methods such as ResNet50, DenseNet201, MobileNet V2, and InceptionV3 are also applied. Results thus obtained exhibited that the proposed research framework performed better than reported in state of the art. Different CNN, models applied for tumor classification such as MobileNet V2, Inception V3, ResNet50, DenseNet201, NASNet and attained accuracy 91.8, 92.8, 92.9, 93.1, 99.6%, respectively. However, NASNet exhibited the highest accuracy." @default.
- W3119429736 created "2021-01-18" @default.
- W3119429736 creator A5005156061 @default.
- W3119429736 creator A5042357679 @default.
- W3119429736 creator A5048466370 @default.
- W3119429736 creator A5066076129 @default.
- W3119429736 creator A5083808204 @default.
- W3119429736 creator A5088139460 @default.
- W3119429736 date "2021-01-05" @default.
- W3119429736 modified "2023-10-16" @default.
- W3119429736 title "Brain tumor detection and multi‐classification using advanced deep learning techniques" @default.
- W3119429736 cites W1901129140 @default.
- W3119429736 cites W1977224872 @default.
- W3119429736 cites W2097117768 @default.
- W3119429736 cites W2112796928 @default.
- W3119429736 cites W2183341477 @default.
- W3119429736 cites W2194775991 @default.
- W3119429736 cites W2485954569 @default.
- W3119429736 cites W2519099455 @default.
- W3119429736 cites W2598236886 @default.
- W3119429736 cites W2759589131 @default.
- W3119429736 cites W2763471831 @default.
- W3119429736 cites W2768529727 @default.
- W3119429736 cites W2789524143 @default.
- W3119429736 cites W2791575870 @default.
- W3119429736 cites W2796486101 @default.
- W3119429736 cites W2887392554 @default.
- W3119429736 cites W2889685514 @default.
- W3119429736 cites W2892057769 @default.
- W3119429736 cites W2892159381 @default.
- W3119429736 cites W2894754687 @default.
- W3119429736 cites W2895333097 @default.
- W3119429736 cites W2898491665 @default.
- W3119429736 cites W2901075482 @default.
- W3119429736 cites W2905017682 @default.
- W3119429736 cites W2905707672 @default.
- W3119429736 cites W2912530199 @default.
- W3119429736 cites W2914033837 @default.
- W3119429736 cites W2914359968 @default.
- W3119429736 cites W2916213758 @default.
- W3119429736 cites W2924072309 @default.
- W3119429736 cites W2933609529 @default.
- W3119429736 cites W2939794185 @default.
- W3119429736 cites W2942902218 @default.
- W3119429736 cites W2943507717 @default.
- W3119429736 cites W2944988845 @default.
- W3119429736 cites W2945656161 @default.
- W3119429736 cites W2946194997 @default.
- W3119429736 cites W2946489756 @default.
- W3119429736 cites W2954113789 @default.
- W3119429736 cites W2955051405 @default.
- W3119429736 cites W2959645102 @default.
- W3119429736 cites W2963163009 @default.
- W3119429736 cites W2963853763 @default.
- W3119429736 cites W2964081807 @default.
- W3119429736 cites W2970321969 @default.
- W3119429736 cites W2974878728 @default.
- W3119429736 cites W2982878939 @default.
- W3119429736 cites W2985328577 @default.
- W3119429736 cites W2985742815 @default.
- W3119429736 cites W2992424090 @default.
- W3119429736 cites W2992991004 @default.
- W3119429736 cites W2995864059 @default.
- W3119429736 cites W2998249562 @default.
- W3119429736 cites W2999950187 @default.
- W3119429736 cites W3002855918 @default.
- W3119429736 cites W3003457589 @default.
- W3119429736 cites W3006630357 @default.
- W3119429736 cites W3013898854 @default.
- W3119429736 cites W3017771109 @default.
- W3119429736 cites W3024660143 @default.
- W3119429736 cites W3033471811 @default.
- W3119429736 cites W3039776238 @default.
- W3119429736 cites W3042392478 @default.
- W3119429736 cites W3046874697 @default.
- W3119429736 cites W3047434002 @default.
- W3119429736 cites W3049652640 @default.
- W3119429736 cites W3087421454 @default.
- W3119429736 cites W4233689830 @default.
- W3119429736 cites W4240579049 @default.
- W3119429736 doi "https://doi.org/10.1002/jemt.23688" @default.
- W3119429736 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33400339" @default.
- W3119429736 hasPublicationYear "2021" @default.
- W3119429736 type Work @default.
- W3119429736 sameAs 3119429736 @default.
- W3119429736 citedByCount "68" @default.
- W3119429736 countsByYear W31194297362021 @default.
- W3119429736 countsByYear W31194297362022 @default.
- W3119429736 countsByYear W31194297362023 @default.
- W3119429736 crossrefType "journal-article" @default.
- W3119429736 hasAuthorship W3119429736A5005156061 @default.
- W3119429736 hasAuthorship W3119429736A5042357679 @default.
- W3119429736 hasAuthorship W3119429736A5048466370 @default.
- W3119429736 hasAuthorship W3119429736A5066076129 @default.
- W3119429736 hasAuthorship W3119429736A5083808204 @default.
- W3119429736 hasAuthorship W3119429736A5088139460 @default.
- W3119429736 hasConcept C108583219 @default.
- W3119429736 hasConcept C119857082 @default.