Matches in SemOpenAlex for { <https://semopenalex.org/work/W3119440176> ?p ?o ?g. }
- W3119440176 endingPage "101133" @default.
- W3119440176 startingPage "101133" @default.
- W3119440176 abstract "Abstract The discovery of unconventional hydrocarbon resources since the late 20th century changed geologists’ understanding of hydrocarbon migration and accumulations and provides a solution to energy shortage. In 2016, unconventional oil production in the USA accounted for 41% of the total oil production; and unconventional natural gas production in China accounted for 35% of total gas production, showing strong growth momentum of unconventional hydrocarbons explorations. Unconventional hydrocarbons generally coexist with conventional petroleum resources; they sometimes distribute in a separate system, not coexisting with a conventional system. Identification and prediction of unconventional resources and their potentials are prominent challenges for geologists. This study analyzed the results of 12,237 drilling wells in six representative petroliferous basins in China and studied the correlations and differences between conventional and unconventional hydrocarbons by comparing their geological features. Migration and accumulation of conventional hydrocarbon are caused dominantly by buoyance. We propose a concept of buoyance-driven hydrocarbon accumulation depth to describe the deepest hydrocarbon accumulation depth driven dominantly by buoyance; beyond this depth the buoyance becomes unimportant for hydrocarbon accumulation. We found that the buoyance-driven hydrocarbon accumulation depth in petroliferous basins controls the different oil/gas reservoirs distribution and resource potentials. Hydrocarbon migration and accumulations above this depth is dominated by buoyancy, forming conventional reservoirs in traps with high porosity and permeability, while hydrocarbon migration and accumulation below this depth is dominated by non-buoyancy forces (mainly refers to capillary force, hydrocarbon volume expansion force, etc.), forming unconventional reservoirs in tight layers. The buoyance-driven hydrocarbon accumulation depths in six basins in China range from 1200 m to 4200 m, which become shallower with increasing geothermal gradient, decreasing particle size of sandstone reservoir layers, or an uplift in the whole petroliferous basin. The predicted unconventional resource potential below the buoyance-driven hydrocarbon accumulation depth in six basins in China is more than 15.71 × 109 t oil equivalent, among them 4.71× 109 t reserves have been proved. Worldwide, 94% of 52,926 oil and gas reservoirs in 1186 basins are conventional reservoirs and only 6% of them are unconventional reservoirs. These 94% conventional reservoirs show promising exploration prospects in the deep area below buoyance-driven hydrocarbon accumulation depth." @default.
- W3119440176 created "2021-01-18" @default.
- W3119440176 creator A5017070151 @default.
- W3119440176 creator A5018152817 @default.
- W3119440176 creator A5032752439 @default.
- W3119440176 creator A5062755510 @default.
- W3119440176 creator A5075329696 @default.
- W3119440176 creator A5077272698 @default.
- W3119440176 creator A5083517876 @default.
- W3119440176 creator A5086415308 @default.
- W3119440176 creator A5086480330 @default.
- W3119440176 date "2021-07-01" @default.
- W3119440176 modified "2023-10-16" @default.
- W3119440176 title "Buoyance-driven hydrocarbon accumulation depth and its implication for unconventional resource prediction" @default.
- W3119440176 cites W1969223661 @default.
- W3119440176 cites W1970393795 @default.
- W3119440176 cites W1970763950 @default.
- W3119440176 cites W1972701175 @default.
- W3119440176 cites W1982047944 @default.
- W3119440176 cites W1999453307 @default.
- W3119440176 cites W2001755259 @default.
- W3119440176 cites W2008472456 @default.
- W3119440176 cites W2010657044 @default.
- W3119440176 cites W2017504706 @default.
- W3119440176 cites W2017578060 @default.
- W3119440176 cites W2024935972 @default.
- W3119440176 cites W2028262151 @default.
- W3119440176 cites W2048760145 @default.
- W3119440176 cites W2058275290 @default.
- W3119440176 cites W2083408354 @default.
- W3119440176 cites W2100930499 @default.
- W3119440176 cites W2141657015 @default.
- W3119440176 cites W2153284305 @default.
- W3119440176 cites W2274301577 @default.
- W3119440176 cites W2334659587 @default.
- W3119440176 cites W2403338807 @default.
- W3119440176 cites W2430441335 @default.
- W3119440176 cites W2433036692 @default.
- W3119440176 cites W2521067477 @default.
- W3119440176 cites W2528695824 @default.
- W3119440176 cites W2529186534 @default.
- W3119440176 cites W2588761704 @default.
- W3119440176 cites W2589862793 @default.
- W3119440176 cites W2600259750 @default.
- W3119440176 cites W2606047552 @default.
- W3119440176 cites W2759977603 @default.
- W3119440176 cites W2767682757 @default.
- W3119440176 cites W2774220319 @default.
- W3119440176 cites W2790622297 @default.
- W3119440176 cites W2793098981 @default.
- W3119440176 cites W2904189095 @default.
- W3119440176 cites W2920806683 @default.
- W3119440176 cites W2920947848 @default.
- W3119440176 cites W2924580277 @default.
- W3119440176 cites W2942129646 @default.
- W3119440176 cites W2945243417 @default.
- W3119440176 cites W2955596048 @default.
- W3119440176 cites W2995880238 @default.
- W3119440176 cites W3011060992 @default.
- W3119440176 cites W3047457664 @default.
- W3119440176 cites W4251055528 @default.
- W3119440176 doi "https://doi.org/10.1016/j.gsf.2020.11.019" @default.
- W3119440176 hasPublicationYear "2021" @default.
- W3119440176 type Work @default.
- W3119440176 sameAs 3119440176 @default.
- W3119440176 citedByCount "30" @default.
- W3119440176 countsByYear W31194401762021 @default.
- W3119440176 countsByYear W31194401762022 @default.
- W3119440176 countsByYear W31194401762023 @default.
- W3119440176 crossrefType "journal-article" @default.
- W3119440176 hasAuthorship W3119440176A5017070151 @default.
- W3119440176 hasAuthorship W3119440176A5018152817 @default.
- W3119440176 hasAuthorship W3119440176A5032752439 @default.
- W3119440176 hasAuthorship W3119440176A5062755510 @default.
- W3119440176 hasAuthorship W3119440176A5075329696 @default.
- W3119440176 hasAuthorship W3119440176A5077272698 @default.
- W3119440176 hasAuthorship W3119440176A5083517876 @default.
- W3119440176 hasAuthorship W3119440176A5086415308 @default.
- W3119440176 hasAuthorship W3119440176A5086480330 @default.
- W3119440176 hasBestOaLocation W31194401761 @default.
- W3119440176 hasConcept C127313418 @default.
- W3119440176 hasConcept C162324750 @default.
- W3119440176 hasConcept C17409809 @default.
- W3119440176 hasConcept C175605778 @default.
- W3119440176 hasConcept C178790620 @default.
- W3119440176 hasConcept C185592680 @default.
- W3119440176 hasConcept C1965285 @default.
- W3119440176 hasConcept C206345919 @default.
- W3119440176 hasConcept C2777207669 @default.
- W3119440176 hasConcept C31258907 @default.
- W3119440176 hasConcept C41008148 @default.
- W3119440176 hasConcept C5900021 @default.
- W3119440176 hasConcept C78762247 @default.
- W3119440176 hasConceptScore W3119440176C127313418 @default.
- W3119440176 hasConceptScore W3119440176C162324750 @default.
- W3119440176 hasConceptScore W3119440176C17409809 @default.
- W3119440176 hasConceptScore W3119440176C175605778 @default.
- W3119440176 hasConceptScore W3119440176C178790620 @default.