Matches in SemOpenAlex for { <https://semopenalex.org/work/W3119464555> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W3119464555 abstract "Author(s): Wang, Xufan | Advisor(s): Zhu, Song-Chun | Abstract: With the application of auto-piloting systems on household automobiles, learning-based path prediction systems have drawn much attention. In production environments, safety is always one of the biggest concerns, which requires robust and consistent performanceof systems in safety-critical situations. However, there has been no available dataset that contains driving scenarios with potential safety hazards, which are rarely observed and hard to gather in the real world. Therefore, here we propose to use simulated driving scenariosas training examples. Specifically, we developed a driving scenario collecting toolkit based on the popular video game Grand Theft Auto V (GTA V), which has realistic physical and graphical modelings for vehicles, pedestrians, and driveways. With the toolkit, we collected real-time navigation trajectories of game agents under safety-critical settings, such as vehicle driving through crossroads with no signals or encountering pedestrians in a close distance. We classified the collected scenarios by the vehicle maneuvers and named theresulting dataset as GTA P2, reflecting the fact that the dataset was collected on GTA V and that the purpose of the dataset is to facilitate the research in path prediction (PP, or VP2) tasks. To motivate the study of multi-agent path prediction with our dataset, we tested multiple multi-agent-path-prediction models on the dataset, including our newly proposed learning model Message Aggregation Network (MAN). MAN is inspired by Gated Graph Neural Network (GG-NN) and performs message aggregation for agents involved in a scene. It shows state-of-art performance on prediction tasks for the GTA P2 dataset." @default.
- W3119464555 created "2021-01-18" @default.
- W3119464555 creator A5064780617 @default.
- W3119464555 date "2020-01-01" @default.
- W3119464555 modified "2023-09-27" @default.
- W3119464555 title "GTA VP2 : a Dataset for Multi-Agent Vehicle Trajectory Prediction under Safety-Critical Scenarios" @default.
- W3119464555 hasPublicationYear "2020" @default.
- W3119464555 type Work @default.
- W3119464555 sameAs 3119464555 @default.
- W3119464555 citedByCount "0" @default.
- W3119464555 crossrefType "journal-article" @default.
- W3119464555 hasAuthorship W3119464555A5064780617 @default.
- W3119464555 hasConcept C119857082 @default.
- W3119464555 hasConcept C121332964 @default.
- W3119464555 hasConcept C1276947 @default.
- W3119464555 hasConcept C132525143 @default.
- W3119464555 hasConcept C13662910 @default.
- W3119464555 hasConcept C154945302 @default.
- W3119464555 hasConcept C199360897 @default.
- W3119464555 hasConcept C2777735758 @default.
- W3119464555 hasConcept C41008148 @default.
- W3119464555 hasConcept C50644808 @default.
- W3119464555 hasConcept C79403827 @default.
- W3119464555 hasConcept C80444323 @default.
- W3119464555 hasConcept C87833898 @default.
- W3119464555 hasConceptScore W3119464555C119857082 @default.
- W3119464555 hasConceptScore W3119464555C121332964 @default.
- W3119464555 hasConceptScore W3119464555C1276947 @default.
- W3119464555 hasConceptScore W3119464555C132525143 @default.
- W3119464555 hasConceptScore W3119464555C13662910 @default.
- W3119464555 hasConceptScore W3119464555C154945302 @default.
- W3119464555 hasConceptScore W3119464555C199360897 @default.
- W3119464555 hasConceptScore W3119464555C2777735758 @default.
- W3119464555 hasConceptScore W3119464555C41008148 @default.
- W3119464555 hasConceptScore W3119464555C50644808 @default.
- W3119464555 hasConceptScore W3119464555C79403827 @default.
- W3119464555 hasConceptScore W3119464555C80444323 @default.
- W3119464555 hasConceptScore W3119464555C87833898 @default.
- W3119464555 hasLocation W31194645551 @default.
- W3119464555 hasOpenAccess W3119464555 @default.
- W3119464555 hasPrimaryLocation W31194645551 @default.
- W3119464555 hasRelatedWork W2511259543 @default.
- W3119464555 hasRelatedWork W2787128344 @default.
- W3119464555 hasRelatedWork W2890235476 @default.
- W3119464555 hasRelatedWork W2978830856 @default.
- W3119464555 hasRelatedWork W2990384329 @default.
- W3119464555 hasRelatedWork W3001207681 @default.
- W3119464555 hasRelatedWork W3005781127 @default.
- W3119464555 hasRelatedWork W3010115409 @default.
- W3119464555 hasRelatedWork W3011720781 @default.
- W3119464555 hasRelatedWork W3090562288 @default.
- W3119464555 hasRelatedWork W3127191823 @default.
- W3119464555 hasRelatedWork W3142375291 @default.
- W3119464555 hasRelatedWork W3164133347 @default.
- W3119464555 hasRelatedWork W3198134448 @default.
- W3119464555 hasRelatedWork W3201193904 @default.
- W3119464555 hasRelatedWork W3207633298 @default.
- W3119464555 hasRelatedWork W3208305167 @default.
- W3119464555 hasRelatedWork W3209288812 @default.
- W3119464555 hasRelatedWork W3209373652 @default.
- W3119464555 hasRelatedWork W3211319472 @default.
- W3119464555 isParatext "false" @default.
- W3119464555 isRetracted "false" @default.
- W3119464555 magId "3119464555" @default.
- W3119464555 workType "article" @default.