Matches in SemOpenAlex for { <https://semopenalex.org/work/W3119471411> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W3119471411 abstract "Oil and gas reservoir detection is one of the major tasks of petroleum energy companies in the exploration and production process. The oil and gas industry has long relied on the expert manual analysis of massive logging data to perform qualitative analyses of oil and gas reservoirs. Although experts interpretations are highly accurate, the time and economic costs are considerably high. With the rapid development of artificial intelligence technologies such as deep learning in recent years, intelligent oil and gas reservoir detection methods have become a focus in the academia and industry. However, sensor data in real industrial scenarios present serious inconsistencies, which bring great challenges to traditional supervised learning models. This paper presents a focused study on the oil and gas reservoir detection task in the context of sensor inconsistencies and proposes a geological knowledge distillation multiscale network approach. This method proposes a multiscale feature fusion mechanism based on self-attention to learn the multiscale dynamic representation of geological information. Then, the model designs a geological knowledge distillation learning framework to learn additional geological knowledge from inconsistent sensor data. This step further improves the models accuracy. A large number of experiments on real industrial datasets are subsequently performed. The results fully prove the effectiveness and robustness of the proposed model in oil and gas reservoir detection." @default.
- W3119471411 created "2021-01-18" @default.
- W3119471411 creator A5002088490 @default.
- W3119471411 creator A5005573946 @default.
- W3119471411 creator A5026618439 @default.
- W3119471411 creator A5038311565 @default.
- W3119471411 creator A5045106792 @default.
- W3119471411 creator A5062430159 @default.
- W3119471411 creator A5079976185 @default.
- W3119471411 creator A5088855593 @default.
- W3119471411 date "2020-12-25" @default.
- W3119471411 modified "2023-09-23" @default.
- W3119471411 title "Method of oil and gas reservoir detection based on geological knowledge distillation learning" @default.
- W3119471411 doi "https://doi.org/10.1360/ssi-2020-0178" @default.
- W3119471411 hasPublicationYear "2020" @default.
- W3119471411 type Work @default.
- W3119471411 sameAs 3119471411 @default.
- W3119471411 citedByCount "1" @default.
- W3119471411 countsByYear W31194714112022 @default.
- W3119471411 crossrefType "journal-article" @default.
- W3119471411 hasAuthorship W3119471411A5002088490 @default.
- W3119471411 hasAuthorship W3119471411A5005573946 @default.
- W3119471411 hasAuthorship W3119471411A5026618439 @default.
- W3119471411 hasAuthorship W3119471411A5038311565 @default.
- W3119471411 hasAuthorship W3119471411A5045106792 @default.
- W3119471411 hasAuthorship W3119471411A5062430159 @default.
- W3119471411 hasAuthorship W3119471411A5079976185 @default.
- W3119471411 hasAuthorship W3119471411A5088855593 @default.
- W3119471411 hasBestOaLocation W31194714111 @default.
- W3119471411 hasConcept C104317684 @default.
- W3119471411 hasConcept C111919701 @default.
- W3119471411 hasConcept C119857082 @default.
- W3119471411 hasConcept C127313418 @default.
- W3119471411 hasConcept C127413603 @default.
- W3119471411 hasConcept C14641988 @default.
- W3119471411 hasConcept C151730666 @default.
- W3119471411 hasConcept C154945302 @default.
- W3119471411 hasConcept C185592680 @default.
- W3119471411 hasConcept C2779343474 @default.
- W3119471411 hasConcept C39432304 @default.
- W3119471411 hasConcept C41008148 @default.
- W3119471411 hasConcept C526740375 @default.
- W3119471411 hasConcept C548081761 @default.
- W3119471411 hasConcept C55493867 @default.
- W3119471411 hasConcept C63479239 @default.
- W3119471411 hasConcept C68189081 @default.
- W3119471411 hasConcept C78762247 @default.
- W3119471411 hasConcept C87717796 @default.
- W3119471411 hasConcept C98045186 @default.
- W3119471411 hasConceptScore W3119471411C104317684 @default.
- W3119471411 hasConceptScore W3119471411C111919701 @default.
- W3119471411 hasConceptScore W3119471411C119857082 @default.
- W3119471411 hasConceptScore W3119471411C127313418 @default.
- W3119471411 hasConceptScore W3119471411C127413603 @default.
- W3119471411 hasConceptScore W3119471411C14641988 @default.
- W3119471411 hasConceptScore W3119471411C151730666 @default.
- W3119471411 hasConceptScore W3119471411C154945302 @default.
- W3119471411 hasConceptScore W3119471411C185592680 @default.
- W3119471411 hasConceptScore W3119471411C2779343474 @default.
- W3119471411 hasConceptScore W3119471411C39432304 @default.
- W3119471411 hasConceptScore W3119471411C41008148 @default.
- W3119471411 hasConceptScore W3119471411C526740375 @default.
- W3119471411 hasConceptScore W3119471411C548081761 @default.
- W3119471411 hasConceptScore W3119471411C55493867 @default.
- W3119471411 hasConceptScore W3119471411C63479239 @default.
- W3119471411 hasConceptScore W3119471411C68189081 @default.
- W3119471411 hasConceptScore W3119471411C78762247 @default.
- W3119471411 hasConceptScore W3119471411C87717796 @default.
- W3119471411 hasConceptScore W3119471411C98045186 @default.
- W3119471411 hasLocation W31194714111 @default.
- W3119471411 hasOpenAccess W3119471411 @default.
- W3119471411 hasPrimaryLocation W31194714111 @default.
- W3119471411 hasRelatedWork W10050540 @default.
- W3119471411 hasRelatedWork W10183233 @default.
- W3119471411 hasRelatedWork W11738893 @default.
- W3119471411 hasRelatedWork W2633549 @default.
- W3119471411 hasRelatedWork W2990258 @default.
- W3119471411 hasRelatedWork W364583 @default.
- W3119471411 hasRelatedWork W4412456 @default.
- W3119471411 hasRelatedWork W9730082 @default.
- W3119471411 hasRelatedWork W9780512 @default.
- W3119471411 hasRelatedWork W10458621 @default.
- W3119471411 isParatext "false" @default.
- W3119471411 isRetracted "false" @default.
- W3119471411 magId "3119471411" @default.
- W3119471411 workType "article" @default.