Matches in SemOpenAlex for { <https://semopenalex.org/work/W3119484303> ?p ?o ?g. }
- W3119484303 endingPage "119430" @default.
- W3119484303 startingPage "119430" @default.
- W3119484303 abstract "Hybrid variable selection method based on V-WSP and variable importance measurement (VIM) coupled with random forest (RF) for quantitative analysis of methanol content in methanol gasoline. • A hybrid variable selection strategy based on V-WSP-VIM coupled with RF was constructed. • OOB error estimation and 10-flod cross validation were applied to improve RF model. • The V-WSP-VIM method can achieve better prediction performance than several other methods. With the trend of portable and miniaturization, Raman spectrometer requires more advanced analytical methods providing more rapid and accurate analysis performance for in-situ analysis. In this work, a hybrid variable selection method based on V-WSP and variable importance measurement (VIM) coupled with random forest (RF) was used to improve the quantitative analysis performance of portable laser Raman instruments for quantitative analysis of methanol content in methanol gasoline. First, five preprocessing methods were applied to reduce the infection information in the raw spectra, respectively. Based on the spectra data processed by multivariate scattering correction (MSC), V-WSP was employed to filter the infection or redundant information in Raman spectroscopy, and 579 variables were obtained when the correlation threshold is 0.9600. Then, the variables were further eliminated by VIM. Finally, 43 variables were obtained by the V-WSP-VIM method. In data processing, out of bag (OOB) error estimation and 10-flod cross validation (CV) were applied to optimize the parameters of preprocessing methods, V-WSP, VIM and RF model. The results fully demonstrated that compared with the RF model based on raw spectra, the RF model based on V-WSP-VIM method can achieve a better prediction performance for the quantitative analysis of methanol content in methanol-gasoline, with the coefficients of determination of cross-validation (R 2 CV ) improving from 0.9100 to 0.9662, the root mean square error of cross-validation (RMSE CV ) reducing from 0.0572 to 0.0365%, the coefficients of determination of prediction set (R 2 P ) improving from 0.9214 to 0.9407, the root mean square error of prediction set (RMSE P ) reducing from 0.0420 to 0.0382%, the variables reducing from 1044 to 43 and the modeling time reducing from 72.94 to 6.41 s. The results indicates that V-WSP-VIM coupled with RF is an effective method to improve the performance of portable laser Raman spectrometer for quantitative analysis of methanol content in methanol gasoline." @default.
- W3119484303 created "2021-01-18" @default.
- W3119484303 creator A5001016058 @default.
- W3119484303 creator A5033362349 @default.
- W3119484303 creator A5050503825 @default.
- W3119484303 creator A5051330675 @default.
- W3119484303 creator A5055781053 @default.
- W3119484303 creator A5064821694 @default.
- W3119484303 creator A5072170282 @default.
- W3119484303 date "2021-04-01" @default.
- W3119484303 modified "2023-10-17" @default.
- W3119484303 title "Hybrid variable selection strategy coupled with random forest (RF) for quantitative analysis of methanol in methanol-gasoline via Raman spectroscopy" @default.
- W3119484303 cites W1184707288 @default.
- W3119484303 cites W1711606228 @default.
- W3119484303 cites W1750907832 @default.
- W3119484303 cites W1982502244 @default.
- W3119484303 cites W1997270149 @default.
- W3119484303 cites W1998612870 @default.
- W3119484303 cites W2012415276 @default.
- W3119484303 cites W2018338598 @default.
- W3119484303 cites W2030776434 @default.
- W3119484303 cites W2043788731 @default.
- W3119484303 cites W2044312323 @default.
- W3119484303 cites W2083259132 @default.
- W3119484303 cites W2090749171 @default.
- W3119484303 cites W2342646976 @default.
- W3119484303 cites W2619230229 @default.
- W3119484303 cites W2728634221 @default.
- W3119484303 cites W2799365888 @default.
- W3119484303 cites W2885475566 @default.
- W3119484303 cites W2886397823 @default.
- W3119484303 cites W2890165472 @default.
- W3119484303 cites W2907022608 @default.
- W3119484303 cites W2909202499 @default.
- W3119484303 cites W2911863681 @default.
- W3119484303 cites W2911964244 @default.
- W3119484303 cites W2961796193 @default.
- W3119484303 cites W2985825085 @default.
- W3119484303 cites W3005664981 @default.
- W3119484303 cites W3023031241 @default.
- W3119484303 cites W3040227215 @default.
- W3119484303 cites W3092695041 @default.
- W3119484303 cites W4238272501 @default.
- W3119484303 doi "https://doi.org/10.1016/j.saa.2021.119430" @default.
- W3119484303 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33485240" @default.
- W3119484303 hasPublicationYear "2021" @default.
- W3119484303 type Work @default.
- W3119484303 sameAs 3119484303 @default.
- W3119484303 citedByCount "13" @default.
- W3119484303 countsByYear W31194843032021 @default.
- W3119484303 countsByYear W31194843032022 @default.
- W3119484303 countsByYear W31194843032023 @default.
- W3119484303 crossrefType "journal-article" @default.
- W3119484303 hasAuthorship W3119484303A5001016058 @default.
- W3119484303 hasAuthorship W3119484303A5033362349 @default.
- W3119484303 hasAuthorship W3119484303A5050503825 @default.
- W3119484303 hasAuthorship W3119484303A5051330675 @default.
- W3119484303 hasAuthorship W3119484303A5055781053 @default.
- W3119484303 hasAuthorship W3119484303A5064821694 @default.
- W3119484303 hasAuthorship W3119484303A5072170282 @default.
- W3119484303 hasConcept C113196181 @default.
- W3119484303 hasConcept C120665830 @default.
- W3119484303 hasConcept C121332964 @default.
- W3119484303 hasConcept C148483581 @default.
- W3119484303 hasConcept C154945302 @default.
- W3119484303 hasConcept C169258074 @default.
- W3119484303 hasConcept C185592680 @default.
- W3119484303 hasConcept C186060115 @default.
- W3119484303 hasConcept C192562407 @default.
- W3119484303 hasConcept C33390570 @default.
- W3119484303 hasConcept C34736171 @default.
- W3119484303 hasConcept C40003534 @default.
- W3119484303 hasConcept C41008148 @default.
- W3119484303 hasConcept C43617362 @default.
- W3119484303 hasConcept C86803240 @default.
- W3119484303 hasConceptScore W3119484303C113196181 @default.
- W3119484303 hasConceptScore W3119484303C120665830 @default.
- W3119484303 hasConceptScore W3119484303C121332964 @default.
- W3119484303 hasConceptScore W3119484303C148483581 @default.
- W3119484303 hasConceptScore W3119484303C154945302 @default.
- W3119484303 hasConceptScore W3119484303C169258074 @default.
- W3119484303 hasConceptScore W3119484303C185592680 @default.
- W3119484303 hasConceptScore W3119484303C186060115 @default.
- W3119484303 hasConceptScore W3119484303C192562407 @default.
- W3119484303 hasConceptScore W3119484303C33390570 @default.
- W3119484303 hasConceptScore W3119484303C34736171 @default.
- W3119484303 hasConceptScore W3119484303C40003534 @default.
- W3119484303 hasConceptScore W3119484303C41008148 @default.
- W3119484303 hasConceptScore W3119484303C43617362 @default.
- W3119484303 hasConceptScore W3119484303C86803240 @default.
- W3119484303 hasFunder F4320321001 @default.
- W3119484303 hasFunder F4320327407 @default.
- W3119484303 hasLocation W31194843031 @default.
- W3119484303 hasOpenAccess W3119484303 @default.
- W3119484303 hasPrimaryLocation W31194843031 @default.
- W3119484303 hasRelatedWork W1978943269 @default.
- W3119484303 hasRelatedWork W2085338381 @default.
- W3119484303 hasRelatedWork W257546275 @default.