Matches in SemOpenAlex for { <https://semopenalex.org/work/W3119490827> ?p ?o ?g. }
- W3119490827 abstract "We conduct a fundamental analysis of detailed financial information to predict earnings. Since 2012, all U.S. public companies must tag quantitative amounts in financial statements and footnotes of their 10-K reports using the eXtensible Business Reporting Language (XBRL). Leveraging machine learning methods, we combine the high-dimensional XBRL-tagged financial data into a summary measure for the direction of one-year-ahead earnings changes. The measure shows significant out-of-sample predictive power: the area under the curve ranging from 67.52 to 68.66 percent is significantly higher than that of a random guess, which is 50 percent. Hedge portfolios are formed based on this measure during 2015-2018. The annual size-adjusted returns to the hedge portfolios range from 5.02 to 9.74 percent. These returns survive after accounting for transaction costs and using the five-factor Fama and French (2015) model. Our measure and strategies outperform those of Ou and Penman (1989), who extract the summary measure from 65 accounting variables using logistic regressions. Additional analyses suggest that the outperformance stems from both nonlinear predictor interactions missed by regressions and the use of more detailed financial data." @default.
- W3119490827 created "2021-01-18" @default.
- W3119490827 creator A5008171524 @default.
- W3119490827 creator A5045405743 @default.
- W3119490827 creator A5050611575 @default.
- W3119490827 creator A5081428716 @default.
- W3119490827 date "2020-01-01" @default.
- W3119490827 modified "2023-09-24" @default.
- W3119490827 title "Fundamental Analysis of XBRL Data: A Machine Learning Approach" @default.
- W3119490827 cites W1511548726 @default.
- W3119490827 cites W1513538699 @default.
- W3119490827 cites W1941659294 @default.
- W3119490827 cites W1968433094 @default.
- W3119490827 cites W1973741592 @default.
- W3119490827 cites W1980415867 @default.
- W3119490827 cites W1986290398 @default.
- W3119490827 cites W1993585367 @default.
- W3119490827 cites W2007385759 @default.
- W3119490827 cites W2017002353 @default.
- W3119490827 cites W2039479473 @default.
- W3119490827 cites W2046661151 @default.
- W3119490827 cites W2061339296 @default.
- W3119490827 cites W2070493638 @default.
- W3119490827 cites W2076893068 @default.
- W3119490827 cites W2081864176 @default.
- W3119490827 cites W2092839836 @default.
- W3119490827 cites W2111730646 @default.
- W3119490827 cites W2148965563 @default.
- W3119490827 cites W2155419203 @default.
- W3119490827 cites W2155982020 @default.
- W3119490827 cites W2162256707 @default.
- W3119490827 cites W2167332641 @default.
- W3119490827 cites W2323670465 @default.
- W3119490827 cites W2436163005 @default.
- W3119490827 cites W2610886376 @default.
- W3119490827 cites W2784691978 @default.
- W3119490827 cites W2787410611 @default.
- W3119490827 cites W2787894218 @default.
- W3119490827 cites W2803872485 @default.
- W3119490827 cites W2807368388 @default.
- W3119490827 cites W2885887139 @default.
- W3119490827 cites W2911964244 @default.
- W3119490827 cites W2923002376 @default.
- W3119490827 cites W2928359989 @default.
- W3119490827 cites W3018089439 @default.
- W3119490827 cites W3121227176 @default.
- W3119490827 cites W3121304596 @default.
- W3119490827 cites W3121345849 @default.
- W3119490827 cites W3121479878 @default.
- W3119490827 cites W3121890812 @default.
- W3119490827 cites W3122309589 @default.
- W3119490827 cites W3122313043 @default.
- W3119490827 cites W3122313958 @default.
- W3119490827 cites W3122609836 @default.
- W3119490827 cites W3123250782 @default.
- W3119490827 cites W3124219329 @default.
- W3119490827 cites W3124758923 @default.
- W3119490827 cites W3124908438 @default.
- W3119490827 cites W3125433491 @default.
- W3119490827 cites W3125500680 @default.
- W3119490827 cites W3125711755 @default.
- W3119490827 cites W3125788531 @default.
- W3119490827 cites W3125998315 @default.
- W3119490827 cites W3131273789 @default.
- W3119490827 cites W4205539948 @default.
- W3119490827 cites W4206355526 @default.
- W3119490827 cites W4211134865 @default.
- W3119490827 cites W4232478844 @default.
- W3119490827 cites W4237239309 @default.
- W3119490827 cites W4252402383 @default.
- W3119490827 doi "https://doi.org/10.2139/ssrn.3741015" @default.
- W3119490827 hasPublicationYear "2020" @default.
- W3119490827 type Work @default.
- W3119490827 sameAs 3119490827 @default.
- W3119490827 citedByCount "2" @default.
- W3119490827 countsByYear W31194908272020 @default.
- W3119490827 countsByYear W31194908272023 @default.
- W3119490827 crossrefType "journal-article" @default.
- W3119490827 hasAuthorship W3119490827A5008171524 @default.
- W3119490827 hasAuthorship W3119490827A5045405743 @default.
- W3119490827 hasAuthorship W3119490827A5050611575 @default.
- W3119490827 hasAuthorship W3119490827A5081428716 @default.
- W3119490827 hasConcept C119857082 @default.
- W3119490827 hasConcept C124101348 @default.
- W3119490827 hasConcept C136764020 @default.
- W3119490827 hasConcept C154945302 @default.
- W3119490827 hasConcept C2522767166 @default.
- W3119490827 hasConcept C2777264242 @default.
- W3119490827 hasConcept C41008148 @default.
- W3119490827 hasConceptScore W3119490827C119857082 @default.
- W3119490827 hasConceptScore W3119490827C124101348 @default.
- W3119490827 hasConceptScore W3119490827C136764020 @default.
- W3119490827 hasConceptScore W3119490827C154945302 @default.
- W3119490827 hasConceptScore W3119490827C2522767166 @default.
- W3119490827 hasConceptScore W3119490827C2777264242 @default.
- W3119490827 hasConceptScore W3119490827C41008148 @default.
- W3119490827 hasLocation W31194908271 @default.
- W3119490827 hasOpenAccess W3119490827 @default.
- W3119490827 hasPrimaryLocation W31194908271 @default.
- W3119490827 hasRelatedWork W2961085424 @default.