Matches in SemOpenAlex for { <https://semopenalex.org/work/W3119491946> ?p ?o ?g. }
- W3119491946 abstract "This study decodes consumers' preference levels using a convolutional neural network (CNN) in neuromarketing. The classification accuracy in neuromarketing is a critical factor in evaluating the intentions of the consumers. Functional near-infrared spectroscopy (fNIRS) is utilized as a neuroimaging modality to measure the cerebral hemodynamic responses. In this study, a specific decoding structure, called CNN-based fNIRS-data analysis, was designed to achieve a high classification accuracy. Compared to other methods, the automated characteristics, constant training of the dataset, and learning efficiency of the proposed method are the main advantages. The experimental procedure required eight healthy participants (four female and four male) to view commercial advertisement videos of different durations (15, 30, and 60 s). The cerebral hemodynamic responses of the participants were measured. To compare the preference classification performances, CNN was utilized to extract the most common features, including the mean, peak, variance, kurtosis, and skewness. Considering three video durations, the average classification accuracies of 15, 30, and 60 s videos were 84.3, 87.9, and 86.4%, respectively. Among them, the classification accuracy of 87.9% for 30 s videos was the highest. The average classification accuracies of three preferences in females and males were 86.2 and 86.3%, respectively, showing no difference in each group. By comparing the classification performances in three different combinations (like vs. so-so, like vs. dislike, and so-so vs. dislike) between two groups, male participants were observed to have targeted preferences for commercial advertising, and the classification performance 88.4% between “like” vs. “dislike” out of three categories was the highest. Finally, pairwise classification performance are shown as follows: For female, 86.1% (like vs. so-so), 87.4% (like vs. dislike), 85.2% (so-so vs. dislike), and for male 85.7, 88.4, 85.1%, respectively." @default.
- W3119491946 created "2021-01-18" @default.
- W3119491946 creator A5021609168 @default.
- W3119491946 creator A5030919944 @default.
- W3119491946 creator A5047838115 @default.
- W3119491946 date "2021-01-06" @default.
- W3119491946 modified "2023-10-06" @default.
- W3119491946 title "Decoding Three Different Preference Levels of Consumers Using Convolutional Neural Network: A Functional Near-Infrared Spectroscopy Study" @default.
- W3119491946 cites W1580440712 @default.
- W3119491946 cites W1967167074 @default.
- W3119491946 cites W1967765022 @default.
- W3119491946 cites W1974893143 @default.
- W3119491946 cites W1980786684 @default.
- W3119491946 cites W1983195655 @default.
- W3119491946 cites W1997061718 @default.
- W3119491946 cites W2000804161 @default.
- W3119491946 cites W2005045639 @default.
- W3119491946 cites W2017757339 @default.
- W3119491946 cites W2026292399 @default.
- W3119491946 cites W2043459693 @default.
- W3119491946 cites W2045561515 @default.
- W3119491946 cites W2047401359 @default.
- W3119491946 cites W2053963261 @default.
- W3119491946 cites W2066303625 @default.
- W3119491946 cites W2076152753 @default.
- W3119491946 cites W2078580188 @default.
- W3119491946 cites W2091953004 @default.
- W3119491946 cites W2092890379 @default.
- W3119491946 cites W2093534731 @default.
- W3119491946 cites W2098644279 @default.
- W3119491946 cites W2101345011 @default.
- W3119491946 cites W2117600088 @default.
- W3119491946 cites W2128404967 @default.
- W3119491946 cites W2131251829 @default.
- W3119491946 cites W2135825876 @default.
- W3119491946 cites W2137523819 @default.
- W3119491946 cites W2141885969 @default.
- W3119491946 cites W2168572392 @default.
- W3119491946 cites W2171401743 @default.
- W3119491946 cites W2171671001 @default.
- W3119491946 cites W2182733233 @default.
- W3119491946 cites W2256369587 @default.
- W3119491946 cites W2325627778 @default.
- W3119491946 cites W2521873691 @default.
- W3119491946 cites W2541311184 @default.
- W3119491946 cites W2545061187 @default.
- W3119491946 cites W2551218032 @default.
- W3119491946 cites W2556096037 @default.
- W3119491946 cites W2561272868 @default.
- W3119491946 cites W2584955774 @default.
- W3119491946 cites W2767482065 @default.
- W3119491946 cites W2789952652 @default.
- W3119491946 cites W2790123099 @default.
- W3119491946 cites W2792373412 @default.
- W3119491946 cites W2794035175 @default.
- W3119491946 cites W2795691199 @default.
- W3119491946 cites W2796170465 @default.
- W3119491946 cites W2804550936 @default.
- W3119491946 cites W2898968651 @default.
- W3119491946 cites W2916544653 @default.
- W3119491946 cites W2918698221 @default.
- W3119491946 cites W2923813768 @default.
- W3119491946 cites W2927874028 @default.
- W3119491946 cites W2928320299 @default.
- W3119491946 cites W2936897040 @default.
- W3119491946 cites W2949555179 @default.
- W3119491946 cites W2951000612 @default.
- W3119491946 cites W2951260480 @default.
- W3119491946 cites W2955150069 @default.
- W3119491946 cites W2956082783 @default.
- W3119491946 cites W2960026766 @default.
- W3119491946 cites W2964266449 @default.
- W3119491946 cites W2964280368 @default.
- W3119491946 cites W2969858434 @default.
- W3119491946 cites W2969915343 @default.
- W3119491946 cites W2970036447 @default.
- W3119491946 cites W2975345526 @default.
- W3119491946 cites W2977912634 @default.
- W3119491946 cites W2979829857 @default.
- W3119491946 cites W2981943387 @default.
- W3119491946 cites W2992719858 @default.
- W3119491946 cites W2993616186 @default.
- W3119491946 cites W3001761785 @default.
- W3119491946 cites W3003551131 @default.
- W3119491946 cites W3003600398 @default.
- W3119491946 cites W3010955800 @default.
- W3119491946 cites W3014558148 @default.
- W3119491946 cites W3017351332 @default.
- W3119491946 cites W3027713425 @default.
- W3119491946 cites W3031967413 @default.
- W3119491946 cites W3037880158 @default.
- W3119491946 cites W3045177359 @default.
- W3119491946 cites W3062839060 @default.
- W3119491946 cites W3085334857 @default.
- W3119491946 cites W3096150952 @default.
- W3119491946 cites W3104887532 @default.
- W3119491946 cites W3161783609 @default.
- W3119491946 cites W4231109964 @default.
- W3119491946 cites W657728953 @default.
- W3119491946 doi "https://doi.org/10.3389/fnhum.2020.597864" @default.