Matches in SemOpenAlex for { <https://semopenalex.org/work/W3119492740> ?p ?o ?g. }
- W3119492740 endingPage "129" @default.
- W3119492740 startingPage "121" @default.
- W3119492740 abstract "<h2>Abstract</h2><h3>Purpose</h3> This study aimed to assess the noise characteristics of ultra-high-resolution computed tomography (UHRCT) with deep learning-based reconstruction (DLR). <h3>Methods</h3> Two different diameters of water phantom were scanned with three different resolution acquisition modes. Images were reconstructed by filtered back projection (FBP), hybrid iterative reconstruction (hybrid-IR), and DLR. Image noise analysis was performed with noise magnitude, peak frequency (<i>f<sub>p</sub></i>) of the noise power spectrum (NPS), and the square root of the area under the curve (√AUC<sub>NPS</sub>) for the NPS curve. <h3>Results</h3> The noise magnitude was up to 3.30 times higher for the FBP acquired in SHR mode than that for the NR mode. The <i>f<sub>p</sub></i> values of the FBP were 0.20–0.21, 0.34–0.36, and 0.34–0.37 cycles/mm for normal resolution (NR), high resolution (HR), and super high resolution (SHR) mode, respectively. The <i>f<sub>p</sub></i> of hybrid-IR was 0.16–0.19, 0.21–0.26, and 0.23–0.26 cycles/mm for NR, HR, and SHR mode, respectively. The <i>f<sub>p</sub></i> of DLR was 0.21–0.32 and 0.22–0.33 cycles/mm for HR and SHR mode, respectively. √AUC<sub>NPS</sub> showed that the highest value in FBP images of the SHR mode was up to 1.89 times that of the NR mode. DLR in the HR and SHR modes showed high noise reduction while suppressing <i>f<sub>p</sub></i> shift with respect to FBP. <h3>Conclusions</h3> The new DLR algorithm could be a solution to the noise increase due to the high-definition detector elements and the small reconstruction matrix element size." @default.
- W3119492740 created "2021-01-18" @default.
- W3119492740 creator A5014002661 @default.
- W3119492740 creator A5027706815 @default.
- W3119492740 creator A5041471403 @default.
- W3119492740 creator A5050731626 @default.
- W3119492740 creator A5083872422 @default.
- W3119492740 creator A5091495349 @default.
- W3119492740 date "2021-01-01" @default.
- W3119492740 modified "2023-10-16" @default.
- W3119492740 title "Deep learning-based reconstruction in ultra-high-resolution computed tomography: Can image noise caused by high definition detector and the miniaturization of matrix element size be improved?" @default.
- W3119492740 cites W1658700720 @default.
- W3119492740 cites W1768201713 @default.
- W3119492740 cites W1949839429 @default.
- W3119492740 cites W1986970768 @default.
- W3119492740 cites W2039083247 @default.
- W3119492740 cites W2099078477 @default.
- W3119492740 cites W2105706236 @default.
- W3119492740 cites W2130746036 @default.
- W3119492740 cites W2336969927 @default.
- W3119492740 cites W2470891878 @default.
- W3119492740 cites W2782790161 @default.
- W3119492740 cites W2795693628 @default.
- W3119492740 cites W2807418591 @default.
- W3119492740 cites W2810645613 @default.
- W3119492740 cites W2810731820 @default.
- W3119492740 cites W2884188796 @default.
- W3119492740 cites W2888521433 @default.
- W3119492740 cites W2936378778 @default.
- W3119492740 cites W2969119144 @default.
- W3119492740 cites W2974549447 @default.
- W3119492740 cites W2994431743 @default.
- W3119492740 cites W3006339091 @default.
- W3119492740 cites W3011867170 @default.
- W3119492740 cites W3036970475 @default.
- W3119492740 cites W3038561885 @default.
- W3119492740 doi "https://doi.org/10.1016/j.ejmp.2020.12.006" @default.
- W3119492740 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33453504" @default.
- W3119492740 hasPublicationYear "2021" @default.
- W3119492740 type Work @default.
- W3119492740 sameAs 3119492740 @default.
- W3119492740 citedByCount "16" @default.
- W3119492740 countsByYear W31194927402021 @default.
- W3119492740 countsByYear W31194927402022 @default.
- W3119492740 countsByYear W31194927402023 @default.
- W3119492740 crossrefType "journal-article" @default.
- W3119492740 hasAuthorship W3119492740A5014002661 @default.
- W3119492740 hasAuthorship W3119492740A5027706815 @default.
- W3119492740 hasAuthorship W3119492740A5041471403 @default.
- W3119492740 hasAuthorship W3119492740A5050731626 @default.
- W3119492740 hasAuthorship W3119492740A5083872422 @default.
- W3119492740 hasAuthorship W3119492740A5091495349 @default.
- W3119492740 hasConcept C104293457 @default.
- W3119492740 hasConcept C115961682 @default.
- W3119492740 hasConcept C120665830 @default.
- W3119492740 hasConcept C121332964 @default.
- W3119492740 hasConcept C134306372 @default.
- W3119492740 hasConcept C138268822 @default.
- W3119492740 hasConcept C141379421 @default.
- W3119492740 hasConcept C154945302 @default.
- W3119492740 hasConcept C192562407 @default.
- W3119492740 hasConcept C197231052 @default.
- W3119492740 hasConcept C205372480 @default.
- W3119492740 hasConcept C2989005 @default.
- W3119492740 hasConcept C33923547 @default.
- W3119492740 hasConcept C35772409 @default.
- W3119492740 hasConcept C41008148 @default.
- W3119492740 hasConcept C71924100 @default.
- W3119492740 hasConcept C94915269 @default.
- W3119492740 hasConcept C99498987 @default.
- W3119492740 hasConceptScore W3119492740C104293457 @default.
- W3119492740 hasConceptScore W3119492740C115961682 @default.
- W3119492740 hasConceptScore W3119492740C120665830 @default.
- W3119492740 hasConceptScore W3119492740C121332964 @default.
- W3119492740 hasConceptScore W3119492740C134306372 @default.
- W3119492740 hasConceptScore W3119492740C138268822 @default.
- W3119492740 hasConceptScore W3119492740C141379421 @default.
- W3119492740 hasConceptScore W3119492740C154945302 @default.
- W3119492740 hasConceptScore W3119492740C192562407 @default.
- W3119492740 hasConceptScore W3119492740C197231052 @default.
- W3119492740 hasConceptScore W3119492740C205372480 @default.
- W3119492740 hasConceptScore W3119492740C2989005 @default.
- W3119492740 hasConceptScore W3119492740C33923547 @default.
- W3119492740 hasConceptScore W3119492740C35772409 @default.
- W3119492740 hasConceptScore W3119492740C41008148 @default.
- W3119492740 hasConceptScore W3119492740C71924100 @default.
- W3119492740 hasConceptScore W3119492740C94915269 @default.
- W3119492740 hasConceptScore W3119492740C99498987 @default.
- W3119492740 hasLocation W31194927401 @default.
- W3119492740 hasOpenAccess W3119492740 @default.
- W3119492740 hasPrimaryLocation W31194927401 @default.
- W3119492740 hasRelatedWork W2011797925 @default.
- W3119492740 hasRelatedWork W2058254206 @default.
- W3119492740 hasRelatedWork W2080670671 @default.
- W3119492740 hasRelatedWork W2105162923 @default.
- W3119492740 hasRelatedWork W2419602524 @default.
- W3119492740 hasRelatedWork W2434876478 @default.
- W3119492740 hasRelatedWork W2802774468 @default.