Matches in SemOpenAlex for { <https://semopenalex.org/work/W3119497718> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W3119497718 abstract "Accurate assessment of renal microstructure and function remains a key point for the prediction and diagnosis of chronic kidney disease (CKD). Applications of novel medical imaging techniques offer a non-invasive and safer tool for analyzing CKD as it allows health care providers to identify morphological, functional and molecular information that detects changes in renal tissue properties and functionalities. Recently, the ability of artificial intelligence to address information retrieval and other critical issues in big medical data analytics has led to a great interest in CKD diagnosis. Besides qualitative analysis of renal medical imaging, texture analysis combined with machine learning has emerged as a promising technique to quantify renal tissue heterogeneity, thus providing a complementary tool for renal function decline prediction. Most importantly, deep learning holds the potential to be a novel approach for renal dysfunction monitoring. This paper proposes a survey focusing on the most recent approaches for using texture analysis and machine learning techniques that can be integrated in clinical research in order to improve renal dysfunction diagnosis and prognosis." @default.
- W3119497718 created "2021-01-18" @default.
- W3119497718 creator A5039364700 @default.
- W3119497718 creator A5040061499 @default.
- W3119497718 creator A5047086484 @default.
- W3119497718 creator A5048726466 @default.
- W3119497718 creator A5050630249 @default.
- W3119497718 creator A5059218854 @default.
- W3119497718 creator A5088811356 @default.
- W3119497718 date "2020-11-28" @default.
- W3119497718 modified "2023-10-17" @default.
- W3119497718 title "Renal Function Evaluation Survey: Artificial Intelligence for the Next Decade?" @default.
- W3119497718 cites W2158458517 @default.
- W3119497718 cites W2181634372 @default.
- W3119497718 cites W2559435482 @default.
- W3119497718 cites W2591769921 @default.
- W3119497718 cites W2615480208 @default.
- W3119497718 cites W2742959901 @default.
- W3119497718 cites W2783105126 @default.
- W3119497718 cites W2886278036 @default.
- W3119497718 cites W2899321136 @default.
- W3119497718 cites W2903623110 @default.
- W3119497718 cites W2909790518 @default.
- W3119497718 cites W2919115771 @default.
- W3119497718 cites W2941964694 @default.
- W3119497718 cites W2944041235 @default.
- W3119497718 cites W2955210211 @default.
- W3119497718 cites W2973300782 @default.
- W3119497718 cites W2980978803 @default.
- W3119497718 cites W2982033036 @default.
- W3119497718 cites W2991289964 @default.
- W3119497718 cites W2997279931 @default.
- W3119497718 doi "https://doi.org/10.1109/icecie50279.2020.9309636" @default.
- W3119497718 hasPublicationYear "2020" @default.
- W3119497718 type Work @default.
- W3119497718 sameAs 3119497718 @default.
- W3119497718 citedByCount "1" @default.
- W3119497718 countsByYear W31194977182022 @default.
- W3119497718 crossrefType "proceedings-article" @default.
- W3119497718 hasAuthorship W3119497718A5039364700 @default.
- W3119497718 hasAuthorship W3119497718A5040061499 @default.
- W3119497718 hasAuthorship W3119497718A5047086484 @default.
- W3119497718 hasAuthorship W3119497718A5048726466 @default.
- W3119497718 hasAuthorship W3119497718A5050630249 @default.
- W3119497718 hasAuthorship W3119497718A5059218854 @default.
- W3119497718 hasAuthorship W3119497718A5088811356 @default.
- W3119497718 hasConcept C119857082 @default.
- W3119497718 hasConcept C124101348 @default.
- W3119497718 hasConcept C126322002 @default.
- W3119497718 hasConcept C14036430 @default.
- W3119497718 hasConcept C154945302 @default.
- W3119497718 hasConcept C159641895 @default.
- W3119497718 hasConcept C2522767166 @default.
- W3119497718 hasConcept C2778653478 @default.
- W3119497718 hasConcept C31601959 @default.
- W3119497718 hasConcept C41008148 @default.
- W3119497718 hasConcept C71924100 @default.
- W3119497718 hasConcept C75684735 @default.
- W3119497718 hasConcept C78458016 @default.
- W3119497718 hasConcept C86803240 @default.
- W3119497718 hasConceptScore W3119497718C119857082 @default.
- W3119497718 hasConceptScore W3119497718C124101348 @default.
- W3119497718 hasConceptScore W3119497718C126322002 @default.
- W3119497718 hasConceptScore W3119497718C14036430 @default.
- W3119497718 hasConceptScore W3119497718C154945302 @default.
- W3119497718 hasConceptScore W3119497718C159641895 @default.
- W3119497718 hasConceptScore W3119497718C2522767166 @default.
- W3119497718 hasConceptScore W3119497718C2778653478 @default.
- W3119497718 hasConceptScore W3119497718C31601959 @default.
- W3119497718 hasConceptScore W3119497718C41008148 @default.
- W3119497718 hasConceptScore W3119497718C71924100 @default.
- W3119497718 hasConceptScore W3119497718C75684735 @default.
- W3119497718 hasConceptScore W3119497718C78458016 @default.
- W3119497718 hasConceptScore W3119497718C86803240 @default.
- W3119497718 hasLocation W31194977181 @default.
- W3119497718 hasLocation W31194977182 @default.
- W3119497718 hasLocation W31194977183 @default.
- W3119497718 hasOpenAccess W3119497718 @default.
- W3119497718 hasPrimaryLocation W31194977181 @default.
- W3119497718 hasRelatedWork W1971368128 @default.
- W3119497718 hasRelatedWork W2497432351 @default.
- W3119497718 hasRelatedWork W2790532628 @default.
- W3119497718 hasRelatedWork W2910064364 @default.
- W3119497718 hasRelatedWork W2960264696 @default.
- W3119497718 hasRelatedWork W3205964248 @default.
- W3119497718 hasRelatedWork W4206777497 @default.
- W3119497718 hasRelatedWork W4247566972 @default.
- W3119497718 hasRelatedWork W4320929188 @default.
- W3119497718 hasRelatedWork W3090563135 @default.
- W3119497718 isParatext "false" @default.
- W3119497718 isRetracted "false" @default.
- W3119497718 magId "3119497718" @default.
- W3119497718 workType "article" @default.