Matches in SemOpenAlex for { <https://semopenalex.org/work/W3119500687> ?p ?o ?g. }
- W3119500687 endingPage "1424" @default.
- W3119500687 startingPage "1408" @default.
- W3119500687 abstract "<div class=section abstract><div class=htmlview paragraph>Accurate modeling of the internal flow and spray characteristics in fuel injectors is a critical aspect of direct injection engine design. However, such high-fidelity computational fluid dynamics (CFD) models are often computationally expensive due to the requirement of resolving fine temporal and spatial scales. This paper addresses the computational bottleneck issue by proposing a machine learning-based emulator framework, which learns efficient surrogate models for spatiotemporal flow distributions relevant for static coupling injection maps, namely total void fraction, velocity, and mass, within a design space of interest. Different design points involving variations of needle lift, fuel viscosity, and level of non-condensable gas in the fuel were explored in this study. An interpretable Bayesian learning strategy was employed to understand the effect of the design parameters on the void fraction fields at the exit of the injector orifice. The results show a strong influence of the amount of non-condensable gas on the level of cavitation as well as the overall shape of the gas-phase structures at the orifice exit. The emulator framework involves the construction of deep autoencoders for efficient dimensionality reduction of the flowfields. Deep artificial neural networks were then employed for prediction of the flowfields for unknown operating conditions. The emulated flowfields were then tested by evaluating spray and combustion predictions from one-way coupling spray simulations. The analysis of the spray predictions from CFD-generated and emulator-predicted injections maps revealed that the emulation framework is capable of reproducing spray predictions with similar level of accuracy, yet at a fraction of the computational cost. The maximum achievable speed-up using the emulator framework is up to 2 million times over the traditional CFD approach for generating static coupling injection maps. The emulation framework provides an efficient pathway for integrating detailed injector simulations into spray and engine simulations.</div></div>" @default.
- W3119500687 created "2021-01-18" @default.
- W3119500687 creator A5003961160 @default.
- W3119500687 creator A5011805902 @default.
- W3119500687 creator A5050542161 @default.
- W3119500687 creator A5057455678 @default.
- W3119500687 creator A5087661085 @default.
- W3119500687 date "2021-04-06" @default.
- W3119500687 modified "2023-10-06" @default.
- W3119500687 title "Accelerating the Generation of Static Coupling Injection Maps Using a Data-Driven Emulator" @default.
- W3119500687 cites W1976833865 @default.
- W3119500687 cites W2001620915 @default.
- W3119500687 cites W2046075515 @default.
- W3119500687 cites W2048264782 @default.
- W3119500687 cites W2067809794 @default.
- W3119500687 cites W2070695436 @default.
- W3119500687 cites W2100495367 @default.
- W3119500687 cites W2105196962 @default.
- W3119500687 cites W2114367267 @default.
- W3119500687 cites W2142635246 @default.
- W3119500687 cites W2287897544 @default.
- W3119500687 cites W2315382902 @default.
- W3119500687 cites W2557442689 @default.
- W3119500687 cites W2565516711 @default.
- W3119500687 cites W2572102001 @default.
- W3119500687 cites W2795969800 @default.
- W3119500687 cites W2796242492 @default.
- W3119500687 cites W2905708759 @default.
- W3119500687 cites W2934755829 @default.
- W3119500687 cites W2938109457 @default.
- W3119500687 cites W2996002074 @default.
- W3119500687 cites W2996240172 @default.
- W3119500687 cites W2999961903 @default.
- W3119500687 cites W3002801482 @default.
- W3119500687 cites W3004671196 @default.
- W3119500687 cites W3006523471 @default.
- W3119500687 cites W3016504211 @default.
- W3119500687 cites W3084032996 @default.
- W3119500687 cites W3096988930 @default.
- W3119500687 cites W4211049957 @default.
- W3119500687 cites W4237151101 @default.
- W3119500687 doi "https://doi.org/10.4271/2021-01-0550" @default.
- W3119500687 hasPublicationYear "2021" @default.
- W3119500687 type Work @default.
- W3119500687 sameAs 3119500687 @default.
- W3119500687 citedByCount "5" @default.
- W3119500687 countsByYear W31195006872022 @default.
- W3119500687 countsByYear W31195006872023 @default.
- W3119500687 crossrefType "journal-article" @default.
- W3119500687 hasAuthorship W3119500687A5003961160 @default.
- W3119500687 hasAuthorship W3119500687A5011805902 @default.
- W3119500687 hasAuthorship W3119500687A5050542161 @default.
- W3119500687 hasAuthorship W3119500687A5057455678 @default.
- W3119500687 hasAuthorship W3119500687A5087661085 @default.
- W3119500687 hasConcept C127413603 @default.
- W3119500687 hasConcept C135186712 @default.
- W3119500687 hasConcept C146978453 @default.
- W3119500687 hasConcept C149635348 @default.
- W3119500687 hasConcept C149810388 @default.
- W3119500687 hasConcept C154945302 @default.
- W3119500687 hasConcept C162324750 @default.
- W3119500687 hasConcept C1633027 @default.
- W3119500687 hasConcept C194242075 @default.
- W3119500687 hasConcept C2779917225 @default.
- W3119500687 hasConcept C2780513914 @default.
- W3119500687 hasConcept C41008148 @default.
- W3119500687 hasConcept C44154836 @default.
- W3119500687 hasConcept C50522688 @default.
- W3119500687 hasConcept C50644808 @default.
- W3119500687 hasConcept C56200935 @default.
- W3119500687 hasConcept C78519656 @default.
- W3119500687 hasConceptScore W3119500687C127413603 @default.
- W3119500687 hasConceptScore W3119500687C135186712 @default.
- W3119500687 hasConceptScore W3119500687C146978453 @default.
- W3119500687 hasConceptScore W3119500687C149635348 @default.
- W3119500687 hasConceptScore W3119500687C149810388 @default.
- W3119500687 hasConceptScore W3119500687C154945302 @default.
- W3119500687 hasConceptScore W3119500687C162324750 @default.
- W3119500687 hasConceptScore W3119500687C1633027 @default.
- W3119500687 hasConceptScore W3119500687C194242075 @default.
- W3119500687 hasConceptScore W3119500687C2779917225 @default.
- W3119500687 hasConceptScore W3119500687C2780513914 @default.
- W3119500687 hasConceptScore W3119500687C41008148 @default.
- W3119500687 hasConceptScore W3119500687C44154836 @default.
- W3119500687 hasConceptScore W3119500687C50522688 @default.
- W3119500687 hasConceptScore W3119500687C50644808 @default.
- W3119500687 hasConceptScore W3119500687C56200935 @default.
- W3119500687 hasConceptScore W3119500687C78519656 @default.
- W3119500687 hasIssue "3" @default.
- W3119500687 hasLocation W31195006871 @default.
- W3119500687 hasOpenAccess W3119500687 @default.
- W3119500687 hasPrimaryLocation W31195006871 @default.
- W3119500687 hasRelatedWork W143577289 @default.
- W3119500687 hasRelatedWork W2017721183 @default.
- W3119500687 hasRelatedWork W2028408776 @default.
- W3119500687 hasRelatedWork W2046246628 @default.
- W3119500687 hasRelatedWork W2092176713 @default.
- W3119500687 hasRelatedWork W2114119119 @default.