Matches in SemOpenAlex for { <https://semopenalex.org/work/W3119536937> ?p ?o ?g. }
- W3119536937 endingPage "119050" @default.
- W3119536937 startingPage "119050" @default.
- W3119536937 abstract "Although the morphology of porous membranes is the key factor in determining their flow, transport and separation properties, a general relation between the morphology and the physical properties has been difficult to identify. One promising approach to develop such a relation is through the application of a machine-learning (ML) algorithm to the problem. Over the last decade significant developments in the development of the ML approaches have led to many breakthroughs in various fields of science and engineering, but their application to porous media has been very limited. In this paper, we develop a deep network for predicting flow properties of porous membranes based on their morphology. The predicted properties include the spatial distributions of the fluid pressure and velocity throughout the entire membranes, provided that the deep network is properly trained by using high-resolution images of the membranes and the pressure and velocity distributions in their pore space at certain points in time. The network includes a residual U-net for developing a mapping between the input and output images, as well as a recurrent network for identifying physical correlations between the output data at various times. The results demonstrate that the deep network provides highly accurate predictions for the properties of interest. Thus, such a network may be used for predicting flow and transport properties of many other types of porous materials, as well as designing membranes for a specific application." @default.
- W3119536937 created "2021-01-18" @default.
- W3119536937 creator A5077608041 @default.
- W3119536937 creator A5079372989 @default.
- W3119536937 creator A5087150520 @default.
- W3119536937 date "2021-03-01" @default.
- W3119536937 modified "2023-10-18" @default.
- W3119536937 title "Physics- and image-based prediction of fluid flow and transport in complex porous membranes and materials by deep learning" @default.
- W3119536937 cites W1965188518 @default.
- W3119536937 cites W2011798719 @default.
- W3119536937 cites W2027753596 @default.
- W3119536937 cites W2035440739 @default.
- W3119536937 cites W2042111846 @default.
- W3119536937 cites W2044998619 @default.
- W3119536937 cites W2081090218 @default.
- W3119536937 cites W2093703685 @default.
- W3119536937 cites W2141374763 @default.
- W3119536937 cites W2268605311 @default.
- W3119536937 cites W2300786629 @default.
- W3119536937 cites W2555630365 @default.
- W3119536937 cites W2725132061 @default.
- W3119536937 cites W2792689398 @default.
- W3119536937 cites W2896641631 @default.
- W3119536937 cites W2900936384 @default.
- W3119536937 cites W2904620727 @default.
- W3119536937 cites W2904965820 @default.
- W3119536937 cites W2909815042 @default.
- W3119536937 cites W2913395807 @default.
- W3119536937 cites W2923266918 @default.
- W3119536937 cites W2923997689 @default.
- W3119536937 cites W2949962474 @default.
- W3119536937 cites W2954948446 @default.
- W3119536937 cites W2982353498 @default.
- W3119536937 cites W2984821197 @default.
- W3119536937 cites W3001164290 @default.
- W3119536937 cites W3014762862 @default.
- W3119536937 cites W3016309349 @default.
- W3119536937 cites W3021730824 @default.
- W3119536937 cites W3024556032 @default.
- W3119536937 cites W3026743408 @default.
- W3119536937 cites W3040819961 @default.
- W3119536937 cites W3042437604 @default.
- W3119536937 doi "https://doi.org/10.1016/j.memsci.2021.119050" @default.
- W3119536937 hasPublicationYear "2021" @default.
- W3119536937 type Work @default.
- W3119536937 sameAs 3119536937 @default.
- W3119536937 citedByCount "26" @default.
- W3119536937 countsByYear W31195369372021 @default.
- W3119536937 countsByYear W31195369372022 @default.
- W3119536937 countsByYear W31195369372023 @default.
- W3119536937 crossrefType "journal-article" @default.
- W3119536937 hasAuthorship W3119536937A5077608041 @default.
- W3119536937 hasAuthorship W3119536937A5079372989 @default.
- W3119536937 hasAuthorship W3119536937A5087150520 @default.
- W3119536937 hasConcept C105569014 @default.
- W3119536937 hasConcept C108583219 @default.
- W3119536937 hasConcept C114809511 @default.
- W3119536937 hasConcept C121332964 @default.
- W3119536937 hasConcept C124101348 @default.
- W3119536937 hasConcept C126255220 @default.
- W3119536937 hasConcept C154945302 @default.
- W3119536937 hasConcept C159985019 @default.
- W3119536937 hasConcept C185592680 @default.
- W3119536937 hasConcept C186060115 @default.
- W3119536937 hasConcept C192562407 @default.
- W3119536937 hasConcept C25343380 @default.
- W3119536937 hasConcept C33923547 @default.
- W3119536937 hasConcept C38349280 @default.
- W3119536937 hasConcept C41008148 @default.
- W3119536937 hasConcept C41625074 @default.
- W3119536937 hasConcept C55493867 @default.
- W3119536937 hasConcept C57879066 @default.
- W3119536937 hasConcept C6648577 @default.
- W3119536937 hasConcept C78609370 @default.
- W3119536937 hasConcept C86803240 @default.
- W3119536937 hasConceptScore W3119536937C105569014 @default.
- W3119536937 hasConceptScore W3119536937C108583219 @default.
- W3119536937 hasConceptScore W3119536937C114809511 @default.
- W3119536937 hasConceptScore W3119536937C121332964 @default.
- W3119536937 hasConceptScore W3119536937C124101348 @default.
- W3119536937 hasConceptScore W3119536937C126255220 @default.
- W3119536937 hasConceptScore W3119536937C154945302 @default.
- W3119536937 hasConceptScore W3119536937C159985019 @default.
- W3119536937 hasConceptScore W3119536937C185592680 @default.
- W3119536937 hasConceptScore W3119536937C186060115 @default.
- W3119536937 hasConceptScore W3119536937C192562407 @default.
- W3119536937 hasConceptScore W3119536937C25343380 @default.
- W3119536937 hasConceptScore W3119536937C33923547 @default.
- W3119536937 hasConceptScore W3119536937C38349280 @default.
- W3119536937 hasConceptScore W3119536937C41008148 @default.
- W3119536937 hasConceptScore W3119536937C41625074 @default.
- W3119536937 hasConceptScore W3119536937C55493867 @default.
- W3119536937 hasConceptScore W3119536937C57879066 @default.
- W3119536937 hasConceptScore W3119536937C6648577 @default.
- W3119536937 hasConceptScore W3119536937C78609370 @default.
- W3119536937 hasConceptScore W3119536937C86803240 @default.
- W3119536937 hasFunder F4320332454 @default.
- W3119536937 hasLocation W31195369371 @default.