Matches in SemOpenAlex for { <https://semopenalex.org/work/W3119553316> ?p ?o ?g. }
- W3119553316 endingPage "e10470" @default.
- W3119553316 startingPage "e10470" @default.
- W3119553316 abstract "MicroRNA (miRNA, miR) has been reported to be highly implicated in a wide range of biological processes in lung cancer (LC), and identification of differentially expressed miRNAs between normal and LC samples has been widely used in the discovery of prognostic factors for overall survival (OS) and response to therapy. The present study was designed to develop and evaluate a miRNA-based signature with prognostic value for the OS of lung adenocarcinoma (LUAD), a common histologic subtype of LC. In brief, the miRNA expression profiles and clinicopathological factors of 499 LUAD patients were collected from The Cancer Genome Atlas (TCGA) database. Kaplan–Meier (K-M) survival analysis showed significant correlations between differentially expressed miRNAs and LUAD survival outcomes. Afterward, 1,000 resample LUAD training matrices based on the training set was applied to identify the potential prognostic miRNAs. The least absolute shrinkage and selection operator (LASSO) cox regression analysis was used to constructed a six-miRNA based prognostic signature for LUAD patients. Samples with different risk scores displayed distinct OS in K-M analysis, indicating considerable predictive accuracy of this signature in both training and validation sets. Furthermore, time-dependent receiver operating characteristic (ROC) analysis demonstrated the nomogram achieved higher predictive accuracy than any other clinical variables after incorporating the clinical information (age, sex, stage, and recurrence). In the stratification analysis, the prognostic value of this classifier in LUAD patients was validated to be independent of other clinicopathological variables, such as age, gender, tumor recurrence, and early stage. Gene set annotation analyses were also conducted through the Hallmark gene set and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, indicating target genes of the six miRNAs were positively related to various molecular pathways of cancer, such as hallmark UV response, Wnt signaling pathway and mTOR signaling pathway. In addition, fresh cancer tissue samples and matched adjacent tissue samples from 12 LUAD patients were collected to verify the expression of miR-582’s target genes in the model, further revealing the potential relationship between SOX9, RASA1, CEP55, MAP4K4 and LUAD tumorigenesis, and validating the predictive value of the model. Taken together, the present study identified a robust signature for the OS prediction of LUAD patients, which could potentially aid in the individualized selection of therapeutic approaches for LUAD patients." @default.
- W3119553316 created "2021-01-18" @default.
- W3119553316 creator A5008261333 @default.
- W3119553316 creator A5037394752 @default.
- W3119553316 creator A5043972628 @default.
- W3119553316 creator A5048913532 @default.
- W3119553316 creator A5051134401 @default.
- W3119553316 date "2021-01-08" @default.
- W3119553316 modified "2023-09-30" @default.
- W3119553316 title "Construction and validation of a novel prognostic signature of microRNAs in lung adenocarcinoma" @default.
- W3119553316 cites W1968008181 @default.
- W3119553316 cites W1989216370 @default.
- W3119553316 cites W2021733365 @default.
- W3119553316 cites W2026192997 @default.
- W3119553316 cites W2035618305 @default.
- W3119553316 cites W2038991262 @default.
- W3119553316 cites W2041992600 @default.
- W3119553316 cites W2051676630 @default.
- W3119553316 cites W2072231000 @default.
- W3119553316 cites W2083158631 @default.
- W3119553316 cites W2102523936 @default.
- W3119553316 cites W2103427526 @default.
- W3119553316 cites W2104504726 @default.
- W3119553316 cites W2106563676 @default.
- W3119553316 cites W2110666579 @default.
- W3119553316 cites W2110697049 @default.
- W3119553316 cites W2113876238 @default.
- W3119553316 cites W2119805434 @default.
- W3119553316 cites W2121010151 @default.
- W3119553316 cites W2123250471 @default.
- W3119553316 cites W2126140528 @default.
- W3119553316 cites W2134629862 @default.
- W3119553316 cites W2137649483 @default.
- W3119553316 cites W2144038313 @default.
- W3119553316 cites W2144154026 @default.
- W3119553316 cites W2146236962 @default.
- W3119553316 cites W2149199519 @default.
- W3119553316 cites W2149848115 @default.
- W3119553316 cites W2150536104 @default.
- W3119553316 cites W2150964566 @default.
- W3119553316 cites W2163210980 @default.
- W3119553316 cites W2170647698 @default.
- W3119553316 cites W2173135538 @default.
- W3119553316 cites W2276369341 @default.
- W3119553316 cites W2327362588 @default.
- W3119553316 cites W2520895302 @default.
- W3119553316 cites W2587125658 @default.
- W3119553316 cites W2735265951 @default.
- W3119553316 cites W2755489436 @default.
- W3119553316 cites W2764195238 @default.
- W3119553316 cites W2767546566 @default.
- W3119553316 cites W2799520029 @default.
- W3119553316 cites W2801881986 @default.
- W3119553316 cites W2883909272 @default.
- W3119553316 cites W2894089206 @default.
- W3119553316 cites W2896568266 @default.
- W3119553316 cites W2901288058 @default.
- W3119553316 cites W2907223426 @default.
- W3119553316 cites W2907845515 @default.
- W3119553316 cites W2917837889 @default.
- W3119553316 cites W2930915742 @default.
- W3119553316 cites W2947368789 @default.
- W3119553316 cites W2954436609 @default.
- W3119553316 cites W2963448188 @default.
- W3119553316 cites W2973537164 @default.
- W3119553316 cites W3014116183 @default.
- W3119553316 cites W3023299375 @default.
- W3119553316 cites W337639699 @default.
- W3119553316 doi "https://doi.org/10.7717/peerj.10470" @default.
- W3119553316 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7798616" @default.
- W3119553316 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33510968" @default.
- W3119553316 hasPublicationYear "2021" @default.
- W3119553316 type Work @default.
- W3119553316 sameAs 3119553316 @default.
- W3119553316 citedByCount "3" @default.
- W3119553316 countsByYear W31195533162022 @default.
- W3119553316 countsByYear W31195533162023 @default.
- W3119553316 crossrefType "journal-article" @default.
- W3119553316 hasAuthorship W3119553316A5008261333 @default.
- W3119553316 hasAuthorship W3119553316A5037394752 @default.
- W3119553316 hasAuthorship W3119553316A5043972628 @default.
- W3119553316 hasAuthorship W3119553316A5048913532 @default.
- W3119553316 hasAuthorship W3119553316A5051134401 @default.
- W3119553316 hasBestOaLocation W31195533161 @default.
- W3119553316 hasConcept C104317684 @default.
- W3119553316 hasConcept C10515644 @default.
- W3119553316 hasConcept C121608353 @default.
- W3119553316 hasConcept C126322002 @default.
- W3119553316 hasConcept C143998085 @default.
- W3119553316 hasConcept C145059251 @default.
- W3119553316 hasConcept C2776256026 @default.
- W3119553316 hasConcept C2781182431 @default.
- W3119553316 hasConcept C34626388 @default.
- W3119553316 hasConcept C50382708 @default.
- W3119553316 hasConcept C54355233 @default.
- W3119553316 hasConcept C58471807 @default.
- W3119553316 hasConcept C71924100 @default.
- W3119553316 hasConcept C86803240 @default.