Matches in SemOpenAlex for { <https://semopenalex.org/work/W3119594724> ?p ?o ?g. }
- W3119594724 endingPage "163" @default.
- W3119594724 startingPage "163" @default.
- W3119594724 abstract "Purpose—This study was conducted to develop an automated detection algorithm for screening fundus abnormalities, including age-related macular degeneration (AMD), diabetic retinopathy (DR), epiretinal membrane (ERM), retinal vascular occlusion (RVO), and suspected glaucoma among health screening program participants. Methods—The development dataset consisted of 43,221 retinal fundus photographs (from 25,564 participants, mean age 53.38 ± 10.97 years, female 39.0%) from a health screening program and patients of the Kangbuk Samsung Hospital Ophthalmology Department from 2006 to 2017. We evaluated our screening algorithm on independent validation datasets. Five separate one-versus-rest (OVR) classification algorithms based on deep convolutional neural networks (CNNs) were trained to detect AMD, ERM, DR, RVO, and suspected glaucoma. The ground truth for both development and validation datasets was graded at least two times by three ophthalmologists. The area under the receiver operating characteristic curve (AUC), sensitivity, and specificity were calculated for each disease, as well as their macro-averages. Results—For the internal validation dataset, the average sensitivity was 0.9098 (95% confidence interval (CI), 0.8660–0.9536), the average specificity was 0.9079 (95% CI, 0.8576–0.9582), and the overall accuracy was 0.9092 (95% CI, 0.8769–0.9415). For the external validation dataset consisting of 1698 images, the average of the AUCs was 0.9025 (95% CI, 0.8671–0.9379). Conclusions—Our algorithm had high sensitivity and specificity for detecting major fundus abnormalities. Our study will facilitate expansion of the applications of deep learning-based computer-aided diagnostic decision support tools in actual clinical settings. Further research is needed to improved generalization for this algorithm." @default.
- W3119594724 created "2021-01-18" @default.
- W3119594724 creator A5012415671 @default.
- W3119594724 creator A5025211491 @default.
- W3119594724 creator A5031758497 @default.
- W3119594724 creator A5045504521 @default.
- W3119594724 creator A5051335583 @default.
- W3119594724 creator A5064605300 @default.
- W3119594724 creator A5066108216 @default.
- W3119594724 creator A5067433666 @default.
- W3119594724 creator A5069167592 @default.
- W3119594724 creator A5082460884 @default.
- W3119594724 creator A5084451964 @default.
- W3119594724 creator A5089294821 @default.
- W3119594724 creator A5091044401 @default.
- W3119594724 date "2021-01-13" @default.
- W3119594724 modified "2023-10-15" @default.
- W3119594724 title "Development of Decision Support Software for Deep Learning-Based Automated Retinal Disease Screening Using Relatively Limited Fundus Photograph Data" @default.
- W3119594724 cites W2005625570 @default.
- W3119594724 cites W2019646504 @default.
- W3119594724 cites W2069110097 @default.
- W3119594724 cites W2122333898 @default.
- W3119594724 cites W2151779330 @default.
- W3119594724 cites W2287734588 @default.
- W3119594724 cites W2509195334 @default.
- W3119594724 cites W2529153069 @default.
- W3119594724 cites W2557738935 @default.
- W3119594724 cites W2598442119 @default.
- W3119594724 cites W2752747624 @default.
- W3119594724 cites W2757321799 @default.
- W3119594724 cites W2767040741 @default.
- W3119594724 cites W2772246530 @default.
- W3119594724 cites W2886395189 @default.
- W3119594724 cites W2891146096 @default.
- W3119594724 cites W2962687275 @default.
- W3119594724 cites W2964137095 @default.
- W3119594724 cites W4240531687 @default.
- W3119594724 doi "https://doi.org/10.3390/electronics10020163" @default.
- W3119594724 hasPublicationYear "2021" @default.
- W3119594724 type Work @default.
- W3119594724 sameAs 3119594724 @default.
- W3119594724 citedByCount "10" @default.
- W3119594724 countsByYear W31195947242021 @default.
- W3119594724 countsByYear W31195947242022 @default.
- W3119594724 countsByYear W31195947242023 @default.
- W3119594724 crossrefType "journal-article" @default.
- W3119594724 hasAuthorship W3119594724A5012415671 @default.
- W3119594724 hasAuthorship W3119594724A5025211491 @default.
- W3119594724 hasAuthorship W3119594724A5031758497 @default.
- W3119594724 hasAuthorship W3119594724A5045504521 @default.
- W3119594724 hasAuthorship W3119594724A5051335583 @default.
- W3119594724 hasAuthorship W3119594724A5064605300 @default.
- W3119594724 hasAuthorship W3119594724A5066108216 @default.
- W3119594724 hasAuthorship W3119594724A5067433666 @default.
- W3119594724 hasAuthorship W3119594724A5069167592 @default.
- W3119594724 hasAuthorship W3119594724A5082460884 @default.
- W3119594724 hasAuthorship W3119594724A5084451964 @default.
- W3119594724 hasAuthorship W3119594724A5089294821 @default.
- W3119594724 hasAuthorship W3119594724A5091044401 @default.
- W3119594724 hasBestOaLocation W31195947241 @default.
- W3119594724 hasConcept C108583219 @default.
- W3119594724 hasConcept C118487528 @default.
- W3119594724 hasConcept C119767625 @default.
- W3119594724 hasConcept C119857082 @default.
- W3119594724 hasConcept C126322002 @default.
- W3119594724 hasConcept C134018914 @default.
- W3119594724 hasConcept C154945302 @default.
- W3119594724 hasConcept C2776391266 @default.
- W3119594724 hasConcept C2776403814 @default.
- W3119594724 hasConcept C2778527774 @default.
- W3119594724 hasConcept C2779829184 @default.
- W3119594724 hasConcept C41008148 @default.
- W3119594724 hasConcept C44249647 @default.
- W3119594724 hasConcept C555293320 @default.
- W3119594724 hasConcept C58471807 @default.
- W3119594724 hasConcept C71924100 @default.
- W3119594724 hasConcept C81363708 @default.
- W3119594724 hasConceptScore W3119594724C108583219 @default.
- W3119594724 hasConceptScore W3119594724C118487528 @default.
- W3119594724 hasConceptScore W3119594724C119767625 @default.
- W3119594724 hasConceptScore W3119594724C119857082 @default.
- W3119594724 hasConceptScore W3119594724C126322002 @default.
- W3119594724 hasConceptScore W3119594724C134018914 @default.
- W3119594724 hasConceptScore W3119594724C154945302 @default.
- W3119594724 hasConceptScore W3119594724C2776391266 @default.
- W3119594724 hasConceptScore W3119594724C2776403814 @default.
- W3119594724 hasConceptScore W3119594724C2778527774 @default.
- W3119594724 hasConceptScore W3119594724C2779829184 @default.
- W3119594724 hasConceptScore W3119594724C41008148 @default.
- W3119594724 hasConceptScore W3119594724C44249647 @default.
- W3119594724 hasConceptScore W3119594724C555293320 @default.
- W3119594724 hasConceptScore W3119594724C58471807 @default.
- W3119594724 hasConceptScore W3119594724C71924100 @default.
- W3119594724 hasConceptScore W3119594724C81363708 @default.
- W3119594724 hasIssue "2" @default.
- W3119594724 hasLocation W31195947241 @default.
- W3119594724 hasLocation W31195947242 @default.
- W3119594724 hasOpenAccess W3119594724 @default.