Matches in SemOpenAlex for { <https://semopenalex.org/work/W3119606906> ?p ?o ?g. }
- W3119606906 abstract "Models of narrative schema knowledge have proven useful for a range of event-related tasks, but they typically do not capture the temporal relationships between events. We propose a single model that addresses both temporal ordering, sorting given events into the order they occurred, and event infilling, predicting new events which fit into an existing temporally-ordered sequence. We use a BART-based conditional generation model that can capture both temporality and common event co-occurrence, meaning it can be flexibly applied to different tasks in this space. Our model is trained as a denoising autoencoder: we take temporally-ordered event sequences, shuffle them, delete some events, and then attempt to recover the original event sequence. This task teaches the model to make inferences given incomplete knowledge about the events in an underlying scenario. On the temporal ordering task, we show that our model is able to unscramble event sequences from existing datasets without access to explicitly labeled temporal training data, outperforming both a BERT-based pairwise model and a BERT-based pointer network. On event infilling, human evaluation shows that our model is able to generate events that fit better temporally into the input events when compared to GPT-2 story completion models." @default.
- W3119606906 created "2021-01-18" @default.
- W3119606906 creator A5015133105 @default.
- W3119606906 creator A5026455792 @default.
- W3119606906 creator A5042487606 @default.
- W3119606906 date "2020-12-31" @default.
- W3119606906 modified "2023-09-27" @default.
- W3119606906 title "Conditional Generation of Temporally-ordered Event Sequences" @default.
- W3119606906 cites W1523160384 @default.
- W3119606906 cites W1702669762 @default.
- W3119606906 cites W1990886313 @default.
- W3119606906 cites W2098844768 @default.
- W3119606906 cites W2127194753 @default.
- W3119606906 cites W2129615653 @default.
- W3119606906 cites W2142269169 @default.
- W3119606906 cites W2145094598 @default.
- W3119606906 cites W2151295812 @default.
- W3119606906 cites W2158847908 @default.
- W3119606906 cites W2185599447 @default.
- W3119606906 cites W2250836735 @default.
- W3119606906 cites W2251325107 @default.
- W3119606906 cites W2257051837 @default.
- W3119606906 cites W2405774341 @default.
- W3119606906 cites W2466175319 @default.
- W3119606906 cites W2511178802 @default.
- W3119606906 cites W2517585385 @default.
- W3119606906 cites W2608829447 @default.
- W3119606906 cites W2738134019 @default.
- W3119606906 cites W2739992537 @default.
- W3119606906 cites W2741237963 @default.
- W3119606906 cites W2741502284 @default.
- W3119606906 cites W2760579680 @default.
- W3119606906 cites W2793978524 @default.
- W3119606906 cites W2798602728 @default.
- W3119606906 cites W2804897457 @default.
- W3119606906 cites W2890984451 @default.
- W3119606906 cites W2949611472 @default.
- W3119606906 cites W2950339735 @default.
- W3119606906 cites W2963097991 @default.
- W3119606906 cites W2963134713 @default.
- W3119606906 cites W2963247627 @default.
- W3119606906 cites W2963341956 @default.
- W3119606906 cites W2963602293 @default.
- W3119606906 cites W2963658765 @default.
- W3119606906 cites W2963672757 @default.
- W3119606906 cites W2964263366 @default.
- W3119606906 cites W2964285770 @default.
- W3119606906 cites W2970170773 @default.
- W3119606906 cites W2970971581 @default.
- W3119606906 cites W2971236147 @default.
- W3119606906 cites W2982399380 @default.
- W3119606906 cites W2983354073 @default.
- W3119606906 cites W2984013322 @default.
- W3119606906 cites W2997195635 @default.
- W3119606906 cites W3021347125 @default.
- W3119606906 cites W30314283 @default.
- W3119606906 cites W3034531294 @default.
- W3119606906 cites W3049275545 @default.
- W3119606906 cites W3082274269 @default.
- W3119606906 cites W3093059841 @default.
- W3119606906 cites W3093733158 @default.
- W3119606906 cites W3094097481 @default.
- W3119606906 cites W3094500738 @default.
- W3119606906 cites W3098824823 @default.
- W3119606906 cites W3099246072 @default.
- W3119606906 cites W3152866586 @default.
- W3119606906 doi "https://doi.org/10.48550/arxiv.2012.15786" @default.
- W3119606906 hasPublicationYear "2020" @default.
- W3119606906 type Work @default.
- W3119606906 sameAs 3119606906 @default.
- W3119606906 citedByCount "0" @default.
- W3119606906 crossrefType "posted-content" @default.
- W3119606906 hasAuthorship W3119606906A5015133105 @default.
- W3119606906 hasAuthorship W3119606906A5026455792 @default.
- W3119606906 hasAuthorship W3119606906A5042487606 @default.
- W3119606906 hasBestOaLocation W31196069061 @default.
- W3119606906 hasConcept C119857082 @default.
- W3119606906 hasConcept C121332964 @default.
- W3119606906 hasConcept C154945302 @default.
- W3119606906 hasConcept C204321447 @default.
- W3119606906 hasConcept C2778112365 @default.
- W3119606906 hasConcept C2779662365 @default.
- W3119606906 hasConcept C41008148 @default.
- W3119606906 hasConcept C52146309 @default.
- W3119606906 hasConcept C54355233 @default.
- W3119606906 hasConcept C62520636 @default.
- W3119606906 hasConcept C86803240 @default.
- W3119606906 hasConceptScore W3119606906C119857082 @default.
- W3119606906 hasConceptScore W3119606906C121332964 @default.
- W3119606906 hasConceptScore W3119606906C154945302 @default.
- W3119606906 hasConceptScore W3119606906C204321447 @default.
- W3119606906 hasConceptScore W3119606906C2778112365 @default.
- W3119606906 hasConceptScore W3119606906C2779662365 @default.
- W3119606906 hasConceptScore W3119606906C41008148 @default.
- W3119606906 hasConceptScore W3119606906C52146309 @default.
- W3119606906 hasConceptScore W3119606906C54355233 @default.
- W3119606906 hasConceptScore W3119606906C62520636 @default.
- W3119606906 hasConceptScore W3119606906C86803240 @default.
- W3119606906 hasLocation W31196069061 @default.
- W3119606906 hasOpenAccess W3119606906 @default.